Abstract

Geometric mistuning models formulated from component mode synthesis methods often require the calculation of component modes, particularly constraint and fixed interface normal modes (FINMs), during substructuring. For integrally bladed rotors, these calculations are required for each sector. This paper proposes methods that reuse information garnered from solving the constraint modes of a single sector on the remaining sectors to reduce memory requirements and solution times. A mesh metamorphosis tool is used to ensure finite element models match geometry obtained from a three-dimensional optical scanner. This tool also produces a common mesh pattern from sector-to-sector. This is exploited to produce common permutation matrices and symbolic factorizations of sector stiffness matrices that are proposed for reuse in solving subsequent constraint modes. Furthermore, a drop tolerance is introduced to remove small values during constraint mode calculation to reduce memory requirements. It is proposed to reuse this dropping pattern produced from a single sector on the remaining sectors. Approaches are then extended to a parallel processing scheme to propose effective matrix partitioning methods. Finally, information gathered during the constraint mode calculations is reused during the solution of the FINMs to improve solution time. Results show reusing permutation matrices and symbolic factorizations from sector-to-sector improves solution time and introduces no error. Using a drop tolerance is shown to reduce storage requirements of a constraint mode matrix, while reusing the dropping pattern introduces minimal error. Similarly, reusing constraint mode information in calculating normal modes greatly improves the performance.

References

1.
Beck
,
J. A.
,
Brown
,
J. M.
,
Cross
,
C. J.
, and
Slater
,
J. C.
,
2014
, “
Component-Mode Reduced-Order Models for Geometric Mistuning of Integrally Bladed Rotors
,”
AIAA J.
,
52
(
7
), pp.
1345
1356
.10.2514/1.J052420
2.
Beck
,
J. A.
,
Brown
,
J. M.
,
Kaszynski
,
A. A.
,
Cross
,
C. J.
, and
Slater
,
J. C.
,
2015
, “
Geometric Mistuning Reduced-Order Models for Integrally Bladed Rotors With Mistuned Disk-Blade Boundaries
,”
ASME J. Turbomach.
,
137
(
7
), p.
071001
.10.1115/1.4029122
3.
Kaszynski
,
A.
,
Brown
,
J.
, and
Beck
,
J.
,
2015
, “
Experimental Validation of an Optically Measured Geometric Mistuning Model Using a System ID Approach
,”
AIAA
Paper No. 2015-1371
.10.2514/6.2015-1371
4.
Vishwakarma
,
V.
,
Sinha
,
A.
,
Bhartiya
,
Y.
, and
Brown
,
J. M.
,
2015
, “
Modified Modal Domain Analysis of a Bladed Rotor Using Coordinate Measurement Machine Data on Geometric Mistuning
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
042502
.10.1115/1.4028615
5.
Lim
,
S.-H.
,
Castanier
,
M.
, and
Pierre
,
C.
,
2004
, “
Vibration Modeling of Bladed Disks Subject to Geometric Mistuning and Design Changes
,”
AIAA
Paper No. 2004-1686.
10.2514/6.2004-1686
6.
Sinha
,
A.
,
2009
, “
Reduced-Order Model of a Bladed Rotor With Geometric Mistuning
,”
ASME J. Turbomach.
,
131
(
3
), p.
031007
.10.1115/1.2987237
7.
Bhartiya
,
Y.
, and
Sinha
,
A.
,
2011
, “
Reduced Order Model of a Bladed Rotor With Geometric Mistuning: Comparison Between Modified Modal Domain Analysis and Frequency Mistuning Approach
,”
ASME
Paper No. GT2011-45391.10.1115/GT2011-45391
8.
Madden
,
A.
,
Epureanu
,
B. I.
, and
Filippi
,
S.
,
2012
, “
Reduced-Order Modeling Approach for Blisks With Large Mass, Stiffness, and Geometric Mistuning
,”
AIAA J.
,
50
(
2
), pp.
366
374
.10.2514/1.J051140
9.
Popig
,
F.
,
Hönisch
,
P.
, and
Kühhorn
,
A.
,
2015
, “
Experimental and Numerical Analysis of Geometrical Induced Mistuning
,”
ASME
Paper No. GT2015-43272.10.1115/GT2015-43272
10.
Baek
,
S.
, and
Epureanu
,
B.
,
2017
, “
Reduced-Order Models of Blisks With Small Geometric Mistuning
,”
ASME J. Vib. Acoust.
,
139
(
4
), p.
041003
.10.1115/1.4036105
11.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
12.
Kaszynski
,
A. A.
,
Beck
,
J. A.
, and
Brown
,
J. M.
,
2013
, “
Uncertainties of an Automated Optical 3D Geometry Measurement, Modeling, and Analysis Process for Mistuned Integrally Bladed Rotor Reverse Engineering
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
102504
.10.1115/1.4025000
13.
Brajlih
,
T.
,
Tasic
,
T.
,
Drstvensek
,
I.
,
Valentan
,
B.
,
Hadzistevic
,
M.
,
Pogacar
,
V.
,
Balic
,
J.
, and
Acko
,
B.
,
2011
, “
Possibilities of Using Three-Dimensional Optical Scanning in Complex Geometrical Inspection
,”
Strojniški vestn. J. Mech. Eng.
,
57
(
11
), pp.
826
833
.10.5545/sv-jme.2010.152
14.
Kaszynski
,
A. A.
,
Beck
,
J. A.
, and
Brown
,
J. M.
,
2014
, “
Automated Finite Element Model Mesh Updating Scheme Applicable to Mistuning Analysis
,”
ASME
Paper GT2014-26925.10.1115/GT2014-26925
15.
Gillaugh
,
D. L.
,
Kaszynski
,
A. A.
,
Brown
,
J. M.
,
Beck
,
J. A.
, and
Slater
,
J. C.
,
2019
, “
Mistuning Evaluation Comparison Via as-Manufactured Models, Traveling Wave Excitation, and Compressor Rigs
,”
ASME J. Eng. Gas Turbines Power
,
141
(
6
), p.
061006
.10.1115/1.4042079
16.
Yannakakis
,
M.
,
1981
, “
Computing the Minimum Fill-in is NP-Complete
,”
SIAM J. Algebraic Discrete Methods
,
2
(
1
), pp.
77
79
.10.1137/0602010
17.
Markowitz
,
H. M.
,
1957
, “
The Elimination Form of the Inverse and Its Application to Linear Programming
,”
Manage. Sci.
,
3
(
3
), pp.
255
269
.10.1287/mnsc.3.3.255
18.
Tinney
,
W. F.
, and
Walker
,
J. W.
,
1967
, “
Direct Solutions of Sparse Network Equations by Optimally Ordered Triangular Factorization
,”
Proc. IEEE
,
55
(
11
), pp.
1801
1809
.10.1109/PROC.1967.6011
19.
Rose
,
D. J.
,
1972
, “
A Graph-Theoretic Study of the Numerical Solution of Sparse Positive Definite Systems of Linear Equations
,”
Graph Theory and Computing
,
R. C.
Read
, ed.
Academic Press
, Amsterdam, The Netherlands, pp.
183
217
.
20.
Davis
,
T. A.
,
Rajamanickam
,
S.
, and
Sid-Lakhdar
,
W. M.
,
2016
, “
A Survey of Direct Methods for Sparse Linear Systems
,”
Acta Numer.
,
25
, pp.
383
566
.10.1017/S0962492916000076
21.
Amestoy
,
P. R.
,
Davis
,
T. A.
, and
Duff
,
I. S.
,
1996
, “
An Approximate Minimum Degree Ordering Algorithm
,”
SIAM J. Matrix Anal. Appl.
,
17
(
4
), pp.
886
905
.10.1137/S0895479894278952
22.
Amestoy
,
P. R.
,
Davis
,
T. A.
, and
Duff
,
I. S.
,
2004
, “
Algorithm 837: Amd, an Approximate Minimum Degree Ordering Algorithm
,”
ACM Trans. Math. Softw.
,
30
(
3
), pp.
381
388
.10.1145/1024074.1024081
23.
Karypis
,
G.
, and
Kumar
,
V.
,
1998
, “
A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs
,”
SIAM J. Sci. Comput.
,
20
(
1
), pp.
359
392
.10.1137/S1064827595287997
24.
George
,
A.
,
1973
, “
Nested Dissection of a Regular Finite Element Mesh
,”
SIAM J. Numer. Anal.
,
10
(
2
), pp.
345
363
.10.1137/0710032
25.
Liu
,
J. W.
,
1990
, “
The Role of Elimination Trees in Sparse Factorization
,”
SIAM J. Matrix Anal. Appl.
,
11
(
1
), pp.
134
172
.10.1137/0611010
26.
Duff
,
I. S.
,
Erisman
,
A. M.
, and
Reid
,
J. K.
,
2017
,
Direct Methods for Sparse Matrices
, 2nd ed.,
Oxford University Press
,
Oxford, UK
.
27.
Dobrian
,
F.
,
Kumfert
,
G.
, and
Pothen
,
A.
,
2000
, “
The Design of Sparse Direct Solvers Using Object-Oriented Techniques
,”
Advances in Software Tools for Scientific Computing
,
H. P.
Langtangen
,
A. M.
Bruaset
, and
E.
Quak
, eds.
Springer
,
Berlin Heidelberg, Germany
, pp.
89
131
.
28.
Cleveland Ashcraft
,
C.
,
Grimes
,
R. G.
,
Lewis
,
J. G.
,
Peyton
,
B. W.
,
Simon
,
H. D.
, and
Bjørstad
,
P. E.
,
1987
, “
Progress in Sparse Matrix Methods for Large Linear Systems on Vector Supercomputers
,”
Int. J. High Perform. Comput. Appl.
,
1
(
4
), pp.
10
30
.10.1177/109434208700100403
29.
Rothberg
,
E.
, and
Gupta
,
A.
,
1993
, “
An Evaluation of Left-Looking, Right-Looking and Multifrontal Approaches to Sparse Cholesky Factorization on Hierarchical-Memory Machines
,”
Int. J. High Speed Comput.
,
05
(
04
), pp.
537
593
.10.1142/S0129053393000232
30.
Dongarra
,
J. J.
,
Du Croz
,
J.
,
Hammarling
,
S.
, and
Duff
,
I. S.
,
1990
, “
A Set of Level 3 Basic Linear Algebra Subprograms
,”
ACM Trans. Math. Softw.
,
16
(
1
), pp.
1
17
.10.1145/77626.79170
31.
Rozin, E.
, and Sivan,
T.
,
2005
, “
Locality of Reference in Sparse Cholesky Factorization Methods
,”
ETNA, Electron. Trans. Numer. Anal. [Electronic Only]
,
21
, pp.
81
106
.http://eudml.org/doc/128020
32.
Gould
,
N. I. M.
,
Scott
,
J. A.
, and
Hu
,
Y.
,
2007
, “
A Numerical Evaluation of Sparse Direct Solvers for the Solution of Large Sparse Symmetric Linear Systems of Equations
,”
ACM Trans. Math. Softw.
,
33
(
2
), p.
10
.10.1145/1236463.1236465
33.
Chen
,
Y.
,
Davis
,
T. A.
,
Hager
,
W. W.
, and
Rajamanickam
,
S.
,
2008
, “
Algorithm 887: Cholmod, Supernodal Sparse Cholesky Factorization and Update/Downdate
,”
ACM Trans. Math. Softw.
,
35
(
3
), pp. 1–14.10.1145/1391989.1391995
34.
Beck
,
J. A.
,
Brown
,
J. M.
,
Kaszynski
,
A. A.
,
Carper
,
E. B.
, and
Gillaugh
,
D. L.
,
2019
, “
Geometric Mistuning Reduced-Order Model Development Utilizing Bayesian Surrogate Models for Component Mode Calculations
,”
ASME J. Eng. Gas Turbines Power
,
141
(
10
), p.
09
.10.1115/1.4044454
35.
Henry
,
E. B.
,
Brown
,
J. M.
, and
Beck
,
J. A.
,
2017
, “
Mistuned Rotor Reduced Order Modeling With Surrogate-Modeled Airfoil Substructures
,”
AIAA
Paper No. 2017-1600.
10.2514/6.2017-1600
36.
Lehoucq
,
R. B.
,
Sorensen
,
D. C.
, and
Yang
,
C.
,
1998
,
ARPACK Users' Guide
,
Society for Industrial and Applied Mathematics
, Philadelphia, PA.
37.
Gustafson
,
J. L.
,
2011
,
Amdahl's Law
,
Springer US
,
Boston, MA
, pp.
53
60
.
38.
Virtanen
,
P.
,
Gommers
,
R.
,
Oliphant
,
T. E.
,
Haberland
,
M.
,
Reddy
,
T.
,
Cournapeau
,
D.
,
Burovski
,
E.
,
Peterson
,
P.
,
Weckesser
,
W.
,
Bright
,
J.
,
van der Walt
,
S. J.
,
Brett
,
M.
,
Wilson
,
J.
,
Millman
,
K. J.
,
Mayorov
,
N.
,
Nelson
,
A. R. J.
,
Jones
,
E.
,
Kern
,
R.
,
Larson
,
E.
,
Carey
,
C. J.
,
Polat
,
İ.
,
Feng
,
Y.
,
Moore
,
E. W.
,
VanderPlas
,
J.
,
Laxalde
,
D.
,
Perktold
,
J.
,
Cimrman
,
R.
,
Henriksen
,
I.
,
Quintero
,
E. A.
,
Harris
,
C. R.
,
Archibald
,
A. M.
,
Ribeiro
,
A. H.
,
Pedregosa
,
F.
,
van Mulbregt
,
P.
,
Vijaykumar
,
A.
,
Bardelli
,
A. P.
,
Rothberg
,
A.
,
Hilboll
,
A.
,
Kloeckner
,
A.
,
Scopatz
,
A.
,
Lee
,
A.
,
Rokem
,
A.
,
Woods
,
C. N.
,
Fulton
,
C.
,
Masson
,
C.
,
Häggström
,
C.
,
Fitzgerald
,
C.
,
Nicholson
,
D. A.
,
Hagen
,
D. R.
,
Pasechnik
,
D. V.
,
Olivetti
,
E.
,
Martin
,
E.
,
Wieser
,
E.
,
Silva
,
F.
,
Lenders
,
F.
,
Wilhelm
,
F.
,
Young
,
G.
,
Price
,
G. A.
,
Ingold
,
G.-L.
,
Allen
,
G. E.
,
Lee
,
G. R.
,
Audren
,
H.
,
Probst
,
I.
,
Dietrich
,
J. P.
,
Silterra
,
J.
,
Webber
,
J. T.
,
Slavič
,
J.
,
Nothman
,
J.
,
Buchner
,
J.
,
Kulick
,
J.
,
Schönberger
,
J. L.
,
de Miranda Cardoso
,
J. V.
,
Reimer
,
J.
,
Harrington
,
J.
,
Rodríguez
,
J. L. C.
,
Nunez-Iglesias
,
J.
,
Kuczynski
,
J.
,
Tritz
,
K.
,
Thoma
,
M.
,
Newville
,
M.
,
Kümmerer
,
M.
,
Bolingbroke
,
M.
,
Tartre
,
M.
,
Pak
,
M.
,
Smith
,
N. J.
,
Nowaczyk
,
N.
,
Shebanov
,
N.
,
Pavlyk
,
O.
,
Brodtkorb
,
P. A.
,
Lee
,
P.
,
McGibbon
,
R. T.
,
Feldbauer
,
R.
,
Lewis
,
S.
,
Tygier
,
S.
,
Sievert
,
S.
,
Vigna
,
S.
,
Peterson
,
S.
,
More
,
S.
,
Pudlik
,
T.
,
Oshima
,
T.
,
Pingel
,
T. J.
,
Robitaille
,
T. P.
,
Spura
,
T.
,
Jones
,
T. R.
,
Cera
,
T.
,
Leslie
,
T.
,
Zito
,
T.
,
Krauss
,
T.
,
Upadhyay
,
U.
,
Halchenko
,
Y. O.
, and
Vázquez-Baeza
,
Y.
, and
Contributors, S…
,
2020
, “
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
,”
Nat. Methods
,
17
(
3
), pp.
261
272
.10.1038/s41592-020-0772-5
You do not currently have access to this content.