Abstract

Stress corrosion is a critical issue that leads to high costs in lost equipment and maintenance, affecting the operation and safety of aircraft platforms. Most aerospace structural components use the aluminum alloys 7xxx series, which contain Al, Cu, Zn, and Mg, due to the combined advantage of its high-strength and lightweight. However, such alloys, specifically AA7075-T4 and AA7075-T651, are susceptible to stress corrosion cracking when exposed to both mechanical stresses and corrosive environments. Stress corrosion cracking gives rise to a major technological challenge affecting aerospace systems as it leads to the degradation of mechanical properties. In addition, such corrosion presents an important yet complex modeling challenge due to the synergistic action of sustained tensile stresses and an aggressive environment. In light of this, we develop a finite element multiphysics model to investigate the interplay of mechanical loading and electrochemistry on the stress corrosion of aluminum alloys. The model includes a multiphysics coupling technique through which the kinetics of corrosion can be predicted in the presence of elastic and plastic deformation modes. The presented model provides useful information toward the kinetics of corrosion via tracking localized corrosion and stress distribution. Although the model is general, it has been made considering the characteristics of AA7xxx series, more specifically, taking AA7075.

References

1.
Starke
,
E. A.
Jr.
, and
Staley
,
J. T.
,
1996
, “
Application of Modern Aluminum Alloys to Aircraft
,”
Prog. Aerosp. Sci.
,
32
(
2–3
), pp.
131
172
.10.1016/0376-0421(95)00004-6
2.
Mouritz
,
A. P.
,
2012
,
Introduction to Aerospace Materials
,
Elsevier
, Amsterdam, The Netherlands.
3.
Suhrutha
,
K.
, and
Srinivas
,
G.
,
2020
, “
Recent Developments of Materials Used in Air Breathing and Advanced Air Breathing Engines
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
872
, p.
012082
.10.1088/1757-899X/872/1/012082
4.
Liu
,
L.
,
Zhao
,
Z.
,
Chen
,
W.
, and
Luo
,
G.
,
2017
, “
Ballistic Impact Behaviour of Stiffened Aluminium Plates for Gas Turbine Engine Containment System
,”
Int. J. Crashworthiness
,
22
(
5
), pp.
467
478
.10.1080/13588265.2017.1281078
5.
Immarigeon
,
J.
,
Holt
,
R.
,
Koul
,
A.
,
Zhao
,
L.
,
Wallace
,
W.
, and
Beddoes
,
J.
,
1995
, “
Lightweight Materials for Aircraft Applications
,”
Mater. Charact.
,
35
(
1
), pp.
41
67
.10.1016/1044-5803(95)00066-6
6.
Bucci
,
R. J.
,
Warren
,
C. J.
, and
Starke
,
E. A.
,
2000
, “
Need for New Materials in Aging Aircraft Structures
,”
J. Aircr.
,
37
(
1
), pp.
122
129
.10.2514/2.2571
7.
Bayoumi
,
M. R.
,
1996
, “
The Mechanics and Mechanisms of Fracture in Stress Corrosion Cracking of Aluminium Alloys
,”
Eng. Fract. Mech.
,
54
(
6
), pp.
879
889
.10.1016/0013-7944(93)E0027-Z
8.
Onoro
,
J.
, and
Ranninger
,
C.
,
1999
, “
Stress-Corrosion-Cracking Behavior of Heat-Treated Al-Zn-Mg-Cu Alloy With Temperature
,”
Mater. Sci.
,
35
(
4
), pp.
509
514
.10.1007/BF02365748
9.
Rajan
,
K.
,
Wallace
,
W.
, and
Beddoes
,
J.
,
1982
, “
Microstructural Study of a High-Strength Stress-Corrosion Resistant 7075 Aluminium Alloy
,”
J. Mater. Sci.
,
17
(
10
), pp.
2817
2824
.10.1007/BF00644656
10.
Birbilis
,
N.
,
Cavanaugh
,
M. K.
, and
Buchheit
,
R. G.
,
2006
, “
Electrochemical Behavior and Localized Corrosion Associated With al7cu2fe Particles in Aluminum Alloy 7075-t651
,”
Corros. Sci.
,
48
(
12
), pp.
4202
4215
.10.1016/j.corsci.2006.02.007
11.
Altenbach
,
C.
,
Schnatterer
,
C.
,
Mercado
,
U. A.
,
Suuronen
,
J.-P.
,
Zander
,
D.
, and
Requena
,
G.
,
2020
, “
Synchrotron-Based Holotomography and x-Ray Fluorescence Study on the Stress Corrosion Cracking Behavior of the Peak-Aged 7075 Aluminum Alloy
,”
J. Alloys Compd.
,
817
, p.
152722
.10.1016/j.jallcom.2019.152722
12.
Rao
,
A. U.
,
Vasu
,
V.
,
Govindaraju
,
M.
, and
Srinadh
,
K. S.
,
2016
, “
Stress Corrosion Cracking Behaviour of 7xxx Aluminum Alloys: A Literature Review
,”
Trans. Nonferrous Met. Soc. China
,
26
(
6
), pp.
1447
1471
.10.1016/S1003-6326(16)64220-6
13.
Song
,
R.
,
Dietzel
,
W.
,
Zhang
,
B.
,
Liu
,
W.
,
Tseng
,
M.
, and
Atrens
,
A.
,
2004
, “
Stress Corrosion Cracking and Hydrogen Embrittlement of an Al–Zn–Mg–Cu Alloy
,”
Acta Mater.
,
52
(
16
), pp.
4727
4743
.10.1016/j.actamat.2004.06.023
14.
Liu
,
C.
, and
Kelly
,
R. G.
,
2019
, “
A Review of the Application of Finite Element Method (FEM) to Localized Corrosion Modeling
,”
Corrosion
,
75
(
11
), pp.
1285
1299
.10.5006/3282
15.
Sarkar
,
S.
,
Warner
,
J. E.
, and
Aquino
,
W.
,
2012
, “
A Numerical Framework for the Modeling of Corrosive Dissolution
,”
Corros. Sci.
,
65
, pp.
502
511
.10.1016/j.corsci.2012.08.059
16.
Cross
,
S. R.
,
Gollapudi
,
S.
, and
Schuh
,
C. A.
,
2014
, “
Validated Numerical Modeling of Galvanic Corrosion of Zinc and Aluminum Coatings
,”
Corros. Sci.
,
88
, pp.
226
233
.10.1016/j.corsci.2014.07.033
17.
Adlakha
,
I.
,
Bazehhour
,
B. G.
,
Muthegowda
,
N.
, and
Solanki
,
K.
,
2018
, “
Effect of Mechanical Loading on the Galvanic Corrosion Behavior of a Magnesium-Steel Structural Joint
,”
Corros. Sci.
,
133
, pp.
300
309
.10.1016/j.corsci.2018.01.038
18.
Yin
,
L.
,
Jin
,
Y.
,
Leygraf
,
C.
, and
Pan
,
J.
,
2016
, “
A Fem Model for Investigation of Micro-Galvanic Corrosion of al Alloys and Effects of Deposition of Corrosion Products
,”
Electrochim. Acta
,
192
, pp.
310
318
.10.1016/j.electacta.2016.01.179
19.
Xu
,
L.
, and
Cheng
,
Y.
,
2013
, “
Development of a Finite Element Model for Simulation and Prediction of Mechanoelectrochemical Effect of Pipeline Corrosion
,”
Corros. Sci.
,
73
, pp.
150
160
.10.1016/j.corsci.2013.04.004
20.
Xu
,
L.
, and
Cheng
,
Y. F.
,
2017
, “
A Finite Element Based Model for Prediction of Corrosion Defect Growth on Pipelines
,”
Int. J. Pressure Vessels Piping
,
153
, pp.
70
79
.10.1016/j.ijpvp.2017.05.002
21.
Anderson
,
K.
,
Weritz
,
J.
, and
Kaufman
,
J. G.
,
2019
, ASM Handbook, Volume 2B: Properties and Selection of Aluminum Alloys, ASM International, Materials Park, OH
.
22.
Torbati-Sarraf
,
H.
,
Stannard
,
T. J.
,
La Plante
,
E. C.
,
Sant
,
G. N.
, and
Chawla
,
N.
,
2020
, “
Direct Observations of Microstructure-Resolved Corrosion Initiation in aa7075-t651 at the Nanoscale Using Vertical Scanning Interferometry (VSI)
,”
Mater. Charact.
,
161
, p.
110166
.10.1016/j.matchar.2020.110166
23.
Singh
,
S. S.
,
Loza
,
J. J.
,
Merkle
,
A. P.
, and
Chawla
,
N.
,
2016
, “
Three Dimensional Microstructural Characterization of Nanoscale Precipitates in aa7075-t651 by Focused Ion Beam (Fib) Tomography
,”
Mater. Charact.
,
118
, pp.
102
111
.10.1016/j.matchar.2016.05.009
24.
Natishan
,
P.
, and
O'grady
,
W.
,
2014
, “
Chloride Ion Interactions With Oxide-Covered Aluminum Leading to Pitting Corrosion: A Review
,”
J. Electrochem. Soc.
,
161
(
9
), pp.
C421
C432
.10.1149/2.1011409jes
25.
Xiao
,
J.
, and
Chaudhuri
,
S.
,
2011
, “
Predictive Modeling of Localized Corrosion: An Application to Aluminum Alloys
,”
Electrochim. Acta
,
56
(
16
), pp.
5630
5641
.10.1016/j.electacta.2011.04.019
26.
Campbell
,
C. E.
,
Bendersky
,
L. A.
,
Boettinger
,
W. J.
, and
Ivester
,
R.
,
2006
, “
Microstructural Characterization of al-7075-t651 Chips and Work Pieces Produced by High-Speed Machining
,”
Mater. Sci. Eng.: A
,
430
(
1–2
), pp.
15
26
.10.1016/j.msea.2006.04.122
27.
Gutman
,
E. M.
,
1994
,
Mechanochemistry of Solid Surfaces
,
World Scientific Publishing Company
, Singapore.
28.
Dowling
,
N. E.
,
2012
,
Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue
,
Pearson
, London, UK.
29.
Comsol Multiphysics
,
2006
, Comsol ab, COMSOL Inc., Stockholm, Sweden.
30.
Karunanithi
,
R.
,
Bera
,
S.
, and
Ghosh
,
K.
,
2014
, “
Electrochemical Behaviour of TiO2 Reinforced al 7075 Composite
,”
Mater. Sci. Eng.: B
,
190
, pp.
133
143
.10.1016/j.mseb.2014.06.013
31.
Burns
,
J. T.
,
Kim
,
S.
, and
Gangloff
,
R. P.
,
2010
, “
Effect of Corrosion Severity on Fatigue Evolution in Al–Zn–Mg–Cu
,”
Corros. Sci.
,
52
(
2
), pp.
498
508
.10.1016/j.corsci.2009.10.006
32.
Weast
,
R.
,
1975
,
Handbook of Chemistry and Physics
,
Chemical Rubber Company
,
Cleveland, OH
.
33.
Vale
,
M. G. D.
,
Medeiros
,
N. D.
,
Fonseca
,
G. S. D.
,
Diniz
,
S. B.
,
Paula
,
A. D. S.
, and
Brandão
,
L. P. M.
,
2019
, “
On the Mechanical Behavior of an al 7075 Alloy Deformed by Asymmetrical and Conventional Rolling
,”
Matéria (Rio De Janeiro)
,
24
(
1
), pp. 1590–1597.10.1590/s1517-707620190001.0625
34.
Wang
,
L.
,
Yang
,
X.
,
Robson
,
J. D.
,
Sanders
,
R. E.
, and
Liu
,
Q.
,
2020
, “
Microstructural Evolution of Cold-Rolled aa7075 Sheet During Solution Treatment
,”
Materials
,
13
(
12
), p.
2734
.10.3390/ma13122734
35.
Wloka
,
J.
, and
Virtanen
,
S.
,
2008
, “
Detection of Nanoscale η-MgZn2 Phase Dissolution From an Al-Zn-Mg-Cu Alloy by Electrochemical Microtransients
,”
Surf. Interface Anal.
,
40
(
8
), pp.
1219
1225
.10.1002/sia.2868
36.
Ikeuba
,
A. I.
,
Zhang
,
B.
,
Wang
,
J.
,
Han
,
E.-H.
,
Ke
,
W.
, and
Okafor
,
P. C.
,
2018
, “
SVET and SIET Study of Galvanic Corrosion of Al/Mgzn2 in Aqueous Solutions at Different pH
,”
J. Electrochem. Soc.
,
165
(
3
), pp.
C180
C194
.10.1149/2.0861803jes
37.
Goswami
,
R.
,
Lynch
,
S.
,
Holroyd
,
N. H.
,
Knight
,
S. P.
, and
Holtz
,
R. L.
,
2013
, “
Evolution of Grain Boundary Precipitates in al 7075 Upon Aging and Correlation With Stress Corrosion Cracking Behavior
,”
Metall. Mater. Trans. A
,
44
(
3
), pp.
1268
1278
.10.1007/s11661-012-1413-0
38.
Birbilis
,
N.
, and
Buchheit
,
R.
,
2008
, “
Investigation and Discussion of Characteristics for Intermetallic Phases Common to Aluminum Alloys as a Function of Solution pH
,”
J. Electrochem. Soc.
,
155
(
3
), p.
C117
.10.1149/1.2829897
39.
Yin
,
L.
,
Jin
,
Y.
,
Leygraf
,
C.
,
Birbilis
,
N.
, and
Pan
,
J.
,
2017
, “
Numerical Simulation of Micro-Galvanic Corrosion in al Alloys: Effect of Geometric Factors
,”
J. Electrochem. Soc.
,
164
(
2
), pp.
C75
C84
.10.1149/2.1221702jes
40.
Kayser
,
T.
,
2011
, “
Characterization of Microstructure in Aluminum Alloys Based on Electron Backscatter Diffraction
,”
Ph.D. thesis
,
Universitätsbibliothek Dortmund
, Dortmund, Germany.https://d-nb.info/1103029142/34
41.
Filippov
,
P.
, and
Koch
,
U.
,
2019
, “
Nanoindentation of Aluminum Single Crystals: Experimental Study on Influencing Factors
,”
Materials
,
12
(
22
), p.
3688
.10.3390/ma12223688
42.
Ge
,
F.
,
Zhang
,
L.
,
Tian
,
H.
,
Yu
,
M.
,
Liang
,
J.
, and
Wang
,
X.
,
2020
, “
Stress Corrosion Cracking Behavior of 2024 and 7075 High-Strength Aluminum Alloys in a Simulated Marine Atmosphere Contaminated With SO2
,”
J. Mater. Eng. Perform.
,
29
(
1
), pp.
410
422
.10.1007/s11665-019-04537-7
You do not currently have access to this content.