Abstract

In radially staged lean direct injection (LDI) systems, pilot fuel plays an important role in cooling the mains fuel gallery in regions of the flight envelope where the mains fuel is stagnant. Under these conditions, managing wetted wall temperatures is vital to avoid the formation of carbonaceous particles, which become deposited on the surfaces of the fuel gallery and can lead to a deterioration in system performance. The prediction of wetted wall temperatures therefore represents an important aspect of the injector design phase. Such predictions are often based on injector thermal models, which tend to rely on the application of convective boundary conditions from empirical heat transfer correlations. The use of these correlations leads to questions over the accuracy of predicted wetted wall temperatures and therefore uncertainty over the probability of deposition. This paper seeks to improve on the current situation by applying the inverse conduction technique to determine heat transfer coefficients (HTCs) specific to the pilot fuel gallery. These HTCs are crucial for determining wetted wall temperatures in the pilot and mains fuel galleries and principally govern the risk of deposition in the stagnant mains. The pilot heat transfer data are further examined alongside measurements of the pilot residence time distribution, which together control the risk of pilot deposition at low fuel flow rates. Both the heat transfer and residence time measurements demonstrate the opportunity for future fuel gallery design refinement and provide the supporting data to facilitate this.

References

1.
Yuen
,
F. T.
,
Liang
,
J. J.
,
Young
,
N. G.
,
Oskooei
,
S.
,
Sreekanth
,
S.
, and
Gulder
,
O. L.
,
2017
, “
Novel Experimental Approach to Studying the Thermal Stability and Coking Propensity of Jet Fuel
,”
Energy Fuels
,
31
(
4
), pp.
3585
3591
.10.1021/acs.energyfuels.6b03091
2.
Kuprowicz
,
N. J.
,
Zabarnick
,
S.
,
West
,
Z. J.
, and
Ervin
,
J. S.
,
2007
, “
Use of Measured Species Class Concentrations With Chemical Kinetic Modeling for the Prediction of Autoxidation and Deposition of Jet Fuels
,”
Energy Fuels
,
21
(
2
), pp.
530
544
.10.1021/ef060391o
3.
Spadaccini
,
L.
,
Sobel
,
D.
, and
Huang
,
H.
,
2001
, “
Deposit Formation and Mitigation in Aircraft Fuels
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
741
746
.10.1115/1.1383772
4.
Chin
,
J.
, and
Lefebvre
,
A.
,
1993
, “
Influence of Flow Conditions on Deposits From Heated Hydrocarbon Fuels
,”
ASME J. Eng. Gas Turbines Power
,
115
(
3
), pp.
433
438
.10.1115/1.2906727
5.
Liu
,
Y.
,
Sun
,
X.
,
Sethi
,
V.
,
Nalianda
,
D.
,
Li
,
Y.-G.
, and
Wang
,
L.
,
2017
, “
Review of Modern Low Emissions Combustion Technologies for Aero Gas Turbine Engines
,”
Prog. Aerosp. Sci.
,
94
, pp.
12
45
.10.1016/j.paerosci.2017.08.001
6.
Marteney
,
P.
, and
Spadaccini
,
L.
,
1986
, “
Thermal Decomposition of Aircraft Fuel
,”
ASME J. Eng. Gas Turbines Power
,
108
(
4
), pp.
648
653
.10.1115/1.3239960
7.
Daggett
,
D. L.
,
Veninger
,
A.
,
Lewis
,
C.
,
Bullock
,
S.
, and
Kamin
,
R.
,
1994
, “
The Development of an Aviation Fuel Thermal Stability Test Unit
,”
ASME
Paper No. 94-GT-217.10.1115/94-GT-217
8.
Siouris
,
S.
,
Blakey
,
S.
, and
Wilson
,
C. W.
,
2013
, “
Investigation of Deposition in Aviation Gas Turbine Fuel Nozzles by Coupling of Experimental Data and Heat Transfer Calculations
,”
Fuel
,
106
, pp.
79
87
.10.1016/j.fuel.2012.12.006
9.
Alborzi
,
E.
,
Blakey
,
S.
,
Ghadbeigi
,
H.
,
Pinna
,
C.
, and
Lewis
,
C.
,
2016
, “
Investigation of Surface Deposition in a Simulated Fuel Injector Feed Arm With Sudden Expansion/Contraction
,”
Fuel
,
186
, pp.
534
543
.10.1016/j.fuel.2016.08.080
10.
Krazinski
,
J.
,
Vanka
,
S.
,
Pearce
,
J.
, and
Roquemore
,
W.
,
1992
, “
A Computational Fluid Dynamics and Chemistry Model for Jet Fuel Thermal Stability
,”
ASME J. Eng. Gas Turbines Power
,
114
(
1
), pp.
104
110
.10.1115/1.2906291
11.
Reddy
,
K.
, and
Roquemore
,
W.
,
1990
, “
A Time-Dependent Model With Global Chemistry for Decomposition and Deposition of Aircraft Fuels
,”
Proceedings of the 200th American Chemical Society National Meeting
, Washington, DC, Aug. 26–31, pp.
26
31
.
12.
Alborzi
,
E.
,
Blakey
,
S.
,
Ghadbeigi
,
H.
, and
Pinna
,
C.
,
2018
, “
Prediction of Growth of Jet Fuel Autoxidative Deposits at Inner Surface of a Replicated Jet Engine Burner Feed Arm
,”
Fuel
,
214
, pp.
528
537
.10.1016/j.fuel.2017.10.006
13.
Liu
,
Z.
,
Tang
,
S.
,
Li
,
Z.
,
Qin
,
Z.
,
Yuan
,
S.
,
Wang
,
L.
,
Wang
,
L.
,
Zhang
,
X.
, and
Liu
,
G.
,
2019
, “
An Improved Kinetic Model for Deposition by Thermal Oxidation of Aviation Hydrocarbon Fuels
,”
Fuel
,
258
, p.
116139
.10.1016/j.fuel.2019.116139
14.
Stickles
,
R.
,
Dodds
,
W.
,
Koblish
,
T.
,
Sager
,
J.
, and
Clouser
,
S.
,
1992
, “
Innovative High Temperature Aircraft Engine Fuel Nozzle Design
,”
ASME
Paper No. 92-GT-132.10.1115/92-GT-132
15.
Rowe
,
M.
,
1970
, “
Measurements and Computations of Flow in Pipe Bends
,”
J. Fluid Mech.
,
43
(
4
), pp.
771
783
.10.1017/S0022112070002732
16.
Humphrey
,
J.
,
Whitelaw
,
J.
, and
Yee
,
G.
,
1981
, “
Turbulent Flow in a Square Duct With Strong Curvature
,”
J. Fluid Mech.
,
103
(
1
), pp.
443
463
.10.1017/S0022112081001419
17.
Metzger
,
D.
, and
Larson
,
D.
,
1986
, “
Use of Melting Point Surface Coatings for Local Convection Heat Transfer Measurements in Rectangular Channel Flows With 90-Deg Turns
,”
ASME J. Heat Transfer-Trans. ASME
,
108
(
1
), pp.
48
54
.10.1115/1.3246903
18.
Sturgis
,
J. C.
, and
Mudawar
,
I.
,
1999
, “
Single-Phase Heat Transfer Enhancement in a Curved, Rectangular Channel Subjected to Concave Heating
,”
Int. J. Heat Mass Transfer
,
42
(
7
), pp.
1255
1272
.10.1016/S0017-9310(98)00232-4
19.
Speziale
,
C. G.
,
1982
, “
On Turbulent Secondary Flows in Pipes of Noncircular Cross-Section
,”
Int. J. Eng. Sci.
,
20
(
7
), pp.
863
872
.10.1016/0020-7225(82)90008-8
20.
Tucker
,
P. G.
,
2016
,
Advanced Computational Fluid and Aerodynamics
, Vol.
54
,
Cambridge University Press
, Cambridge, UK.
21.
Fadhila
,
H.
,
Medina
,
H.
,
Aleksandrova
,
S.
, and
Benjamin
,
S.
,
2020
, “
A New Non-Linear RANS Model With Enhanced Near-Wall Treatment of Turbulence Anisotropy
,”
Appl. Math. Modell.
,
82
, pp.
293
313
.10.1016/j.apm.2020.01.056
22.
Heidrich
,
P.
,
Wolfersdorf
,
J. V.
, and
Schnieder
,
M.
,
2009
, “
Experimental Study of Heat Transfer in Gas Turbine Blades Using a Transient Inverse Technique
,”
Heat Transfer Eng.
,
30
(
13
), pp.
1077
1086
.10.1080/01457630902922236
23.
Lin
,
M.
, and
Wang
,
T.
,
2002
, “
A Transient Liquid Crystal Method Using a 3-D Inverse Transient Conduction Scheme
,”
Int. J. Heat Mass Transfer
,
45
(
17
), pp.
3491
3501
.10.1016/S0017-9310(02)00073-X
24.
Ireland
,
P. T.
,
Neely
,
A. J.
,
Gillespie
,
D. R.
, and
Robertson
,
A. J.
,
1999
, “
Turbulent Heat Transfer Measurements Using Liquid Crystals
,”
Int. J. Heat Fluid Flow
,
20
(
4
), pp.
355
367
.10.1016/S0142-727X(99)00030-2
25.
Ekkad
,
S. V.
,
Ou
,
S.
, and
Rivir
,
R. B.
,
2004
, “
A Transient Infrared Thermography Method for Simultaneous Film Cooling Effectiveness and Heat Transfer Coefficient Measurements From a Single Test
,”
ASME
Paper No. GT2004-54236.10.1115/GT2004-54236
26.
Hamadache
,
Z.
, and
Spencer
,
A.
,
2014
, “
Fuel Gallery Residence Time and Heat Transfer Experimental Technique Development for Gas Turbine Fuel Injectors
,”
17th International Symposium on Applications of Laser Techniques to Fluid Mechanics
, Lisbon, Portugal, July 7–10,
pp.
7
10
.https://repository.lboro.ac.uk/articles/conference_contribution/Fuel_gallery_residence_time_heat_transfer_experimental_technique_development_for_gas_turbine_fuel_injectors/9221546
27.
Bonham
,
C.
,
Brend
,
M.
,
Spencer
,
A.
,
Tanimizu
,
K.
, and
Wise
,
D.
,
2018
, “
Impact of Flow Unsteadiness on Steady-State Gas-Path Stagnation Temperature Measurements
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
122602
.10.1115/1.4040285
28.
Holman
,
J.
,
2010
,
Heat Transfer
, 10th ed.,
McGraw-Hill
,
New York
.
29.
Winterton
,
R. H.
,
1998
, “
Where Did the Dittus and Boelter Equation Come From?
,”
Int. J. Heat Mass Transfer
,
41
(
4–5
), pp.
809
810
.10.1016/S0017-9310(97)00177-4
30.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1995
, “
Engineering Application of Experimental Uncertainty Analysis
,”
AIAA J.
,
33
(
10
), pp.
1888
1896
.10.2514/3.12742
31.
Besserman
,
D.
, and
Tanrikut
,
S.
,
1992
, “
Comparison of Heat Transfer Measurements With Computations for Turbulent Flow Around a 180 deg Bend
,”
ASME J. Turbomach.
,
114
(
4
), pp.
865
871
.10.1115/1.2928040
32.
Lytle
,
D.
, and
Webb
,
B.
,
1994
, “
Air Jet Impingement Heat Transfer at Low Nozzle-Plate Spacings
,”
Int. J. Heat Mass Transfer
,
37
(
12
), pp.
1687
1697
.10.1016/0017-9310(94)90059-0
33.
Kay
,
J. M.
, and
Nedderman
,
R. M.
,
1985
,
Fluid Mechanics and Transfer Processes
,
CUP Archive
, Cambridge, UK.
34.
Wiedner
,
B.
, and
Camci
,
C.
,
1997
, “
Passage Flow Structure and Its Influence on Endwall Heat Transfer in a 90 deg Turning Duct: Mean Flow and High Resolution Endwall Heat Transfer Experiments
,”
ASME J. Turbomach.
,
119
(
1
), pp.
39
50
.10.1115/1.2841009
You do not currently have access to this content.