Abstract

Thermoacoustic instabilities are commonly encountered in the development of aeroengines and rocket motors. Research on the fundamental mechanism of thermoacoustic instabilities is beneficial for the optimal design of these engine systems. In the present study, a thermoacoustic instability model based on the lean premixed gas turbines (LPGT) combustion system was established. The longitudinal distribution of heat release caused by the intrinsic instability of flame front was considered in the model. Effects of different heat release distributions and characteristic parameters (Lewis number Le, Zeldovich Number β, and Prandtl number Pr) of the premixed gas on thermoacoustic instability behaviors of the LPGT system were investigated based on the established model. Results show that the LPGT system features have two kinds of unstable thermoacoustic modes. The first one corresponds to the natural acoustic mode of the plenum and the second one corresponds to that of the combustion chamber. The characteristic parameters of the premixed gases have a large impact on the stability of the system and can even change the system from stable to unstable state.

References

1.
Yu
,
Z. M.
,
Ai
,
Y. H.
,
Wang
,
Y.
, and
Luo
,
C. Z.
,
2021
, “
Thermoacoustic Instability Analysis of a Laminar Lean Premixed Flame Under Autoignitive Conditions
,”
Combust. Flame
,
225
, pp.
513
523
.10.1016/j.combustflame.2020.11.032
2.
Arndt
,
C. M.
,
Dem
,
C.
, and
Meier
,
W.
,
2021
, “
Influence of Fuel Staging on Thermo-Acoustic Oscillations in a Premixed Stratified Dual-Swirl Gas Turbine Model Combustor
,”
Flow Turbul. Combust.
,
106
(
2
), pp.
613
629
.10.1007/s10494-020-00158-6
3.
Zhao
,
D.
,
Lu
,
Z.
,
Zhao
,
H.
,
Li
,
X. Y.
,
Wang
,
B.
, and
Liu
,
P.
,
2018
, “
A Review of Active Control Approaches in Stabilizing Combustion Systems in Aerospace Industry
,”
Prog. Aerosp. Sci.
,
97
, pp.
35
60
.10.1016/j.paerosci.2018.01.002
4.
Fan
,
X.
,
Liu
,
C.
,
Xu
,
G.
,
Zhang
,
C.
,
Wang
,
J.
, and
Lin
,
Y.
,
2020
, “
Experimental Investigations of the Spray Structure and Interactions Between Sectors of a Double-Swirl Low-Emission Combustor
,”
Chin. J. Aeronautics
,
33
(
2
), pp.
589
212
.10.1016/j.cja.2019.09.009
5.
Santner
,
J.
,
Ahmed
,
S. F.
,
Farouk
,
T.
, and
Dryer
,
F. L.
,
2016
, “
Computational Study of NOx Formation at Conditions Relevant to Gas Turbine Operation: Part 1
,”
Energy Fuels
,
30
(
8
), pp.
6745
6755
.10.1021/acs.energyfuels.6b00420
6.
O'Connor
,
J.
,
Acharya
,
V.
, and
Lieuwen
,
T.
,
2015
, “
Transverse Combustion Instabilities: Acoustic, Fluid Mechanic, and Flame Processes
,”
Prog. Energy Combust. Sci.
,
49
, pp.
1
39
.10.1016/j.pecs.2015.01.001
7.
Rayleigh
,
J. W. S. B.
,
1945
,
The Theory of Sound
,
Dover Publications
,
New York
.
8.
Cohen
,
J.
, and
Anderson
,
T.
, “
Experimental Investigation of Near-Blowout Instabilities in a Lean Premixed Combustor
,”
AIAA
Paper No. 1996-0819.10.2514/6.1996-0819
9.
Lee
,
D.
, and
Anderson
,
T.
, “
Measurements of Fuel/Air-Acoustic Coupling in Lean Premixed Combustion Systems
,”
AIAA
Paper No. 1999-0450.10.2514/6.1999-450
10.
Park
,
J.
,
Nguyen
,
T. H.
,
Joung
,
D.
,
Huh
,
K. Y.
, and
Lee
,
M. C.
,
2013
, “
Prediction of NOx and CO Emissions From an Industrial Lean-Premixed Gas Turbine Combustor Using a Chemical Reactor Network Model
,”
Energy Fuels
,
27
(
3
), pp.
1643
1651
.10.1021/ef301741t
11.
Kendrick
,
D. W.
,
Anderson
,
T. J.
,
Sowa
,
W. A.
, and
Snyder
,
T. S.
,
1999
, “
Acoustic Sensitivities of Lean-Premixed Fuel Injectors in a Single Nozzle Rig
,”
ASME J. Eng. Gas Turbines Power
,
121
(
3
), pp.
429
436
.10.1115/1.2818491
12.
Anderson
,
T. J.
,
Sowa
,
W. A.
, and
Morford
,
S. A.
, “
Dynamic Flame Structure in a Low NOx Premixed Combustor
,”
ASME
Paper No. 1998-GT-568.10.1115/1998-GT-568
13.
Mongia
,
R.
,
Dibble
,
R.
, and
Lovett
,
J.
, “
Measurement of Air-Fuel Fluctuations Caused by Combustor Driven Oscillations
,”
ASME
Paper No. 1998-GT-304.10.1115/1998-GT-304
14.
Janus
,
M. C.
,
Richards
,
G. A.
, and
Yip
,
M. J.
, “
Effects of Ambient Conditions and Fuel Composition on Combustion Stability
,”
ASME
Paper No. 1997-GT-266.10.1115/1997-GT-266
15.
Richards
,
G. A.
, and
Janus
,
M. C.
,
1998
, “
Characterization of Oscillations During Premix Gas Turbine Combustion
,”
ASME J. Eng. Gas Turbines Power
,
120
(
2
), pp.
294
302
.10.1115/1.2818120
16.
Straub
,
D. L.
, and
Richards
,
G. A.
, “
Effect of Fuel Nozzle Configuration on Premix Combustion Dynamics
,”
ASME
Paper No. 1998-GT-492.10.1115/1998-GT-492
17.
Straub
,
D. L.
,
Richards
,
G. A.
, and
Yip
,
M. J.
, “
Importance of Axial Swirl Vane Location on Combustion Dynamics for Lean Premix Fuel Injectors
,”
AIAA
Paper No. 1998-3909.10.2514/6.1998-3909
18.
Keller
,
J. J.
,
1995
, “
Thermoacoustic Oscillations in Combustion Chambers of Gas Turbines
,”
AIAA J.
,
33
(
12
), pp.
2280
2287
.10.2514/3.12980
19.
Peracchio
,
A. A.
, and
Proscia
,
W. M.
,
1999
, “
Nonlinear Heat-Release/Acoustic Model for Thermoacoustic Instability in Lean Premixed Combustors
,”
ASME J. Eng. Gas Turbines Power
,
121
(
3
), pp.
415
421
.10.1115/1.2818489
20.
Hsiao
,
G.
,
Pandalai
,
R.
, and
Hura
,
H.
, “
Combustion Dynamic Modeling for Gas Turbine Engines
,”
AIAA
Paper No. 1998-3380.10.2514/6.1998-3380
21.
Hubbard
,
S.
, and
Dowling
,
A. P.
, “
Acoustic Instabilities in Premix Burners
,”
AIAA
Paper No. 1998-2272.10.2514/6.1998-2272
22.
Hubbard
,
S.
, and
Dowling
,
A. P.
,
2001
, “
Acoustic Resonances of an Industrial Gas Turbine Combustion System
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
766
773
.10.1115/1.1370975
23.
Ducruix
,
S.
,
Durox
,
D.
, and
Candel
,
S.
,
2000
, “
Theoretical and Experimental Determinations of the Transfer Function of a Laminar Premixed Flame
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
765
773
.10.1016/S0082-0784(00)80279-9
24.
Schuller
,
T.
,
Ducruix
,
S.
,
Durox
,
D.
, and
Candel
,
S.
,
2002
, “
Modeling Tools for the Prediction of Premixed Flame Transfer Functions
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
107
113
.10.1016/S1540-7489(02)80018-9
25.
Lieuwen
,
T.
, and
Neumeier
,
Y.
,
2002
, “
Nonlinear Pressure-Heat Release Transfer Function Measurements in a Premixed Combustor
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
99
105
.10.1016/S1540-7489(02)80017-7
26.
Ni
,
A.
,
Polifke
,
W.
, and
Joos
,
F.
, “
Ignition Delay Time Modulation as a Contribution to Thermo-Acoustic Instability in Sequential Combustion
,”
ASME
Paper No. 2000-GT-0103.10.1115/2000-GT-0103
27.
Lieuwen
,
T.
, and
Zinn
,
B. T.
,
1998
, “
The Role of Equivalence Ratio Oscillations in Driving Combustion Instabilities in Low NOx Gas Turbines
,”
Proc. Combust. Inst.
,
27
(
2
), pp.
1809
1816
.10.1016/S0082-0784(98)80022-2
28.
Dowling
,
A. P.
,
1995
, “
The Calculation of Thermoacoustic Oscillations
,”
J. Sound Vib.
,
180
(
4
), pp.
557
581
.10.1006/jsvi.1995.0100
29.
Li
,
L.
,
Zhao
,
D.
, and
de Goey
,
L. P. H.
,
2016
, “
Transient Energy Growth Analysis of a Thermoacoustic System With Distributed Mean Heat Input
,”
Int. J. Heat Mass Transfer
,
102
, pp.
287
301
.10.1016/j.ijheatmasstransfer.2016.05.112
30.
Marble
,
F. E.
, and
Candel
,
S. M.
,
1977
, “
Acoustic Disturbances From Gas Non-Uniformities Convected Through a Nozzle
,”
J. Sound Vib.
,
55
(
2
), pp.
225
243
.10.1016/0022-460X(77)90596-X
31.
Markstein
,
G. H.
,
1951
, “
Experimental and Theoretical Studies of Flame Front Instability
,”
J. Aeronaut. Sci.
,
18
(
3
), pp.
199
209
.10.2514/8.1900
32.
Sivashinsky
,
G. I.
,
1977
, “
Diffusional-Thermal Theory of Cellular Flames
,”
Combust. Sci. Technol.
,
15
(
3–4
), pp.
137
145
.10.1080/00102207708946779
33.
Matalon
,
M.
,
Cui
,
C.
, and
Bechtold
,
J. K.
,
2003
, “
Hydrodynamic Theory of Premixed Flames: Effects of Stoichiometry, Variable Transport Coefficients and Arbitrary Reaction Orders
,”
J. Fluid Mech.
,
487
, pp.
179
210
.10.1017/S0022112003004683
34.
Ma
,
L.-Z.
, and
Chomiak
,
J.
,
1998
, “
Asymptotic Flame Shapes and Speeds of Hydrodynamically Unstable Laminar Flames
,”
Symp. Combust.
,
27
(
1
), pp.
545
553
.10.1016/S0082-0784(98)80445-1
35.
Schuller
,
T.
,
Durox
,
D.
,
Palies
,
P.
, and
Candel
,
S.
,
2012
, “
Acoustic Decoupling of Longitudinal Modes in Generic Combustion Systems
,”
Combust. Flame
,
159
(
5
), pp.
1921
1931
.10.1016/j.combustflame.2012.01.010
You do not currently have access to this content.