Abstract

Supercritical carbon dioxide (SCO2) Brayton cycle has been widely used as a substitute for traditional steam cycles. As one of the key components of power-dense turbomachines, dry gas seal (DGS) has been considered one of the most suitable dynamic seal options due to its superior sealing performance. In this paper, considering the installation errors and external disturbances of the shaft end seal in a 14 MW supercritical carbon dioxide turbine, a comprehensive numerical study was conducted on the seal static and rotordynamic characteristics for four dry gas seal designs with different coning displacements. To account for the real gas effect of SCO2, a table lookup program was used to obtain the physics properties of CO2 under supercritical conditions based on the database of the National Institute of Standards and Technology (NIST). A frequency-dependent rotordynamic coefficients stiffness damping model (KC model) for SCO2 DGS and the mesh deformation technique were adapted to analyze the rotordynamic performance of the designed DGS. Steady-state numerical results of leakage rate, opening force, and steady film stiffness were analyzed and compared under four coning displacements. Transient numerical results of rotordynamic force coefficients were analyzed and studied under four coning displacement ratios and 10 vibration frequencies. Results show that the increase in coning displacement causes a 20% rise in leakage rate and a 2.4% increase in opening force. The tilted seal ring results in a maximum 30%–84% variation of the dynamic stiffness and greatly influences the damping coefficient. From a comprehensive view, the tilt of the seal rings brings undesired influences on both the static and rotor dynamic performance of SCO2 DGS. The distortion of the seal rings due to installation errors and other disturbances should be avoided as far as possible in SCO2 DGSs.

References

1.
Dutta
,
A.
,
Gupta
,
A.
,
Sathish
,
S.
,
Bandooni
,
A.
, and
Kumar
,
P.
,
2019
, “
Simple Recuperated SCO2 Cycle Revisited: Optimization of Operating Parameters for Maximum Cycle Efficiency
,”
ASME
Paper No. GT2019-90315.10.1115/GT2019-90315
2.
Dostal
,
V.
,
Hejzlar
,
P.
, and
Driscoll
,
M. J.
,
2006
, “
High-Performance Supercritical Carbon Dioxide Cycle for Next-Generation Nuclear Reactors
,”
Nucl. Technol.
,
154
(
3
), pp.
265
282
.10.13182/NT154-265
3.
Ahn
,
Y.
,
Bae
,
S. J.
,
Kim
,
M.
,
Cho
,
S. K.
,
Baik
,
S.
,
Lee
,
J. I.
, and
Cha
,
J. E.
,
2015
, “
Review of Supercritical CO2 Power Cycle Technology and Current Status of Research and Development
,”
Nucl. Eng. Technol.
,
47
(
6
), pp.
647
661
.10.1016/j.net.2015.06.009
4.
Klaus
,
B.
,
Peter
,
F.
, and
Richard
,
D.
,
2017
,
Fundamentals and Applications of Supercritical Carbon Dioxide (SCO2) Based Power Cycles
,
Elsevier
,
Cambridge, MA
, pp.
4
21
.
5.
Clementoni
,
E. M.
,
Cox
,
T. L.
, and
Sprague
,
C. P.
,
2014
, “
Startup and Operation of a Supercritical Carbon Dioxide Brayton Cycle
,”
ASME J. Eng. Gas Turbines Power
,
136
(
7
), p.
071701
.10.1115/1.4026539
6.
Fuller
,
R.
,
Preuss
,
J.
, and
Noall
,
J.
,
2012
, “
Turbomachinery for Supercritical CO2 Power Cycles
,”
ASME
Paper No. GT2012-68735.10.1115/GT2012-68735
7.
Allison
,
T. C.
,
Moor
,
J. J.
,
Wikes
,
J. C.
, and
Brun
,
K.
,
2017
, “
Turbomachinery Overview for Supercritical CO2 Power Cycles
,”
The 46th Turbomachinery and 33rd Pump Symposia
, Houston, TX, Sept. 11–14, pp.
1
15
.https://oaktrust.library.tamu.edu/handle/1969.1/166785
8.
Bidkar
,
R. A.
,
Sevincer
,
E.
,
Wang
,
J.
,
Thatte
,
A. M.
,
Mann
,
A.
,
Peter
,
M.
,
Musgrove
,
G.
,
Allison
,
T.
, and
Moore
,
J.
,
2017
, “
Low-Leakage Shaft-End Seals for Utility-Scale Supercritical CO2 Turboexpanders
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022503
.10.1115/1.4034258
9.
Stahley
,
J. S.
,
2005
,
Dry Gas Seals Handbook
,
PennWell Books
, Tulsa, OK.
10.
Yuan
,
T.
,
Li
,
Z.
,
Li
,
J.
, and
Yuan
,
Q.
,
2021
, “
Design and Analysis of Cooling Structure for Dry Gas Seal Chamber of Supercritical Carbon Dioxide Turbine Shaft End
,”
ASME
Paper No. GT2021-59177.10.1115/GT2021-59177
11.
Fairuz
,
Z. M.
, and
Jahn
,
I.
,
2016
, “
The Influence of Real Gas Effects on the Performance of Supercritical CO2 Dry Gas Seals
,”
Tribol. Int.
,
102
, pp.
333
347
.10.1016/j.triboint.2016.05.038
12.
Nelson
,
D. A.
,
2019
, “
Development of a Noncontacting Mechanical Seal for High Performance Turbocharger Applications
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
031008
.10.1115/1.4041244
13.
Zakariya
,
M. F.
,
2018
, “
Simulation and Development of Dry Gas Seal for Supercritical CO2 Carbon Dioxide
,” Ph.D. thesis,
The University of Queensland
,
St. Lucia, Queensland
.
14.
Ding
,
X.
, and
Lu
,
J.
,
2016
, “
Theoretical Analysis and Experiment on Gas Film Temperature in a Spiral Groove Dry Gas Seal Under High Speed and Pressure
,”
Int. J. Heat Mass Transfer
,
96
, pp.
438
450
.10.1016/j.ijheatmasstransfer.2016.01.045
15.
Ojile
,
J. O.
,
2009
, “
Numerical Modelling of Bidirectional Dry Gas Face Seals
,” Ph.D. thesis,
Cranfield University
,
Cranfield, Bedfordshire
.
16.
Bai
,
S.
,
Peng
,
X.
,
Meng
,
Y.
, and
Wen
,
S.
,
2012
, “
Modeling of Gas Thermal Effect Based on Energy Equipartition Principle
,”
ASME J. Tribol. Trans.
,
55
(
6
), pp.
752
761
.10.1080/10402004.2012.706181
17.
Bai
,
S.
,
Ma
,
C.
,
Peng
,
X.
, and
Wen
,
S.
,
2015
, “
Thermoelastohydrodynamic Behavior of Gas Spiral Groove Face Seals Operating at High Pressure and Speed
,”
ASME J. Tribol.
,
137
(
2
), p.
021502
.10.1115/1.4029358
18.
Luo
,
J.
, and
Brillert
,
D.
,
2021
, “
Experimental Studies on Dry Gas Seals With Time-Resolved Film Thickness Measurements
,”
ASME
Paper No. GT2021-58547.10.1115/GT2021-58547
19.
Trivedi
,
D.
,
Bidkar
,
R. A.
,
Wolfe
,
C. E.
, and
Zheng
,
X.
,
2018
, “
Film-Stiffness Characterization for Supercritical CO2 Film-Riding Seals
,”
ASME
Paper No. GT2018-76161.10.1115/GT2018-76161
20.
Trivedi
,
D.
,
Bidkar
,
R. A.
,
Wolfe
,
C. E.
, and
Mortzheim
,
J.
,
2019
, “
Supercritical CO2 Test for Hydrostatic Film Stiffness in Film-Riding Seals
,”
ASME
Paper No. GT2019-90975.10.1115/GT2019-90975
21.
Miller
,
B. A.
, and
Green
,
I.
,
2002
, “
Numerical Techniques for Computing Rotordynamic Properties of Mechanical Gas Face Seals
,”
ASME J. Tribol.
,
124
(
4
), pp.
755
761
.10.1115/1.1467635
22.
Thatte
,
A.
, and
Dheeradhada
,
V.
,
2016
, “
Coupled Physics Performance Predictions and Risk Assessment for Dry Gas Seal Operating in mw-Scale Supercritical CO2 Turbine
,”
ASME
Paper No. GT2016-57670.10.1115/GT2016-57670
23.
Faria
,
M. T. C.
, and
Miranda
,
W. M.
,
2012
, “
Pressure Dam Influence on the Performance of Gas Face Seals
,”
Tribol. Int.
,
47
, pp.
134
141
.10.1016/j.triboint.2011.10.011
24.
Chen
,
Y.
,
Peng
,
X.
,
Jiang
,
J.
,
Meng
,
X.
, and
Li
,
J.
,
2018
, “
Experimental and Theoretical Studies of the Dynamic Behavior of a Spiral-Groove Dry Gas Seal at High-Speeds
,”
Tribol. Int.
,
125
, pp.
17
26
.10.1016/j.triboint.2018.04.005
25.
Blasiak
,
S.
, and
Zahorulko
,
A. V.
,
2016
, “
A Parametric and Dynamic Analysis of Non-Contacting Gas Face Seals With Modified Surfaces
,”
Tribol. Int.
,
94
, pp.
126
137
.10.1016/j.triboint.2015.08.014
26.
Blasiak
,
S.
,
2015
, “
An Analytical Approach to Heat Transfer and Thermal Distortions in Non-Contacting Face Seals
,”
Int. J. Heat Mass Transfer
,
81
, pp.
90
102
.10.1016/j.ijheatmasstransfer.2014.10.011
27.
Fairuz
,
Z. M.
,
Jahn
,
I.
, and
Abdul-Rahman
,
R.
,
2019
, “
The Effect of Convection Area on the Deformation of Dry Gas Seal Operating With Supercritical CO2
,”
Tribol. Int.
,
137
, pp.
349
365
.10.1016/j.triboint.2019.04.043
28.
Du
,
Q.
,
Zhang
,
L.
,
Zhang
,
D.
, and
Xie
,
Y.
,
2020
, “
Numerical Investigation on Flow Characteristics and Aerodynamic Performance of Shroud Seal in a Supercritical CO2 Axial-Flow Turbine
,”
Appl. Therm. Eng.
,
169
, p.
114960
.10.1016/j.applthermaleng.2020.114960
29.
Day
,
M.
, and
Allison
,
T.
,
2016
, “
Analysis of Historical Dry Gas Seal Failure Data
,”
ASME
Paper No. GT2015-57076.10.1115/GT2015-57076
30.
Ertas
,
B. H.
, and
Delgado
,
A. M. J.
,
2018
, “
Dynamic Characterization of an Integral Squeeze Film Bearing Support Damper for a Supercritical CO2 Expander
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p.
052501
.10.1115/1.4038121
31.
Moore
,
J.
,
Cich
,
S.
,
Day-Towler
,
M.
, and Mortzheim, J., “
Development and Testing of a 10 MWe Supercritical CO2 Turbine in a 1 MWe Flow Loop
,”
ASME
Paper No. GT2020-15945.10.1115/GT2020-15945
32.
Gbriel
,
R. P.
,
1994
, “
Fundamentals of Spiral Groove Noncontacting Face Seals
,”
Lubr. Eng.
,
50
(
3
), pp.
215
224
.http://pascalfrancis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3968251
33.
ANSYS
,
2006
,
ANSYS CFX-Solver Theory Guide. Release 11.0
,
Ansys
,
Canonsburg, PA
.
34.
Si
,
H.
,
Cao
,
L.
, and
Chen
,
D.
,
2021
, “
Dynamic Characteristics of Supercritical Carbon Dioxide (SCO2) Seal Influenced by Multiple Factors
,”
Tribol. Int.
,
162
, p.
107131
.10.1016/j.triboint.2021.107131
You do not currently have access to this content.