Abstract

Ammonia is a promising hydrogen and energy carrier but also a challenging fuel to use in gas turbines, due to its low flame speed, limited flammability range, and the production of NOx from fuel-bound nitrogen. Previous experimental and theoretical work have demonstrated that partially dissociated ammonia (NH3/H2/N2 mixtures) can match many of the laminar flame properties of methane flames. Among the remaining concerns pertaining to the use of NH3/H2/N2 blends in gas turbines is their thermoacoustic behavior. This paper presents the first measurements of flame transfer functions (FTFs) for turbulent, premixed, and NH3/H2/N2-air flames and compares them to CH4-air flames that have a similar unstretched laminar flame speed and adiabatic flame temperature. FTFs for NH3/H2/N2 blends were found to have a lower gain than CH4 FTFs at low frequencies. However, the cutoff frequency was found to be greater, due to a shorter flame length. For both CH4 flames and NH3/H2/N2 flames, the confinement diameter was found to have a strong influence on peak gain values. Chemiluminescence resolved along the longitudinal direction shows a suppression of fluctuations when the flame first interacts with the wall followed by a subsequent recovery, but with a significant phase shift. Nevertheless, simple Strouhal number scalings based on the flame length and reactant bulk velocity at the dump plane result in a reasonable collapse of the FTF cutoff frequency and phase curves.

References

1.
Valera-Medina
,
A.
,
Amer-Hatem
,
F.
,
Azad
,
A. K.
,
Dedoussi
,
I. C.
,
de Joannon
,
M.
,
Fernandes
,
R. X.
,
Glarborg
,
P.
, et al.,
2021
, “
Review on Ammonia as a Potential Fuel: From Synthesis to Economics
,”
Energy Fuels
,
35
(
9
), pp.
6964
7029
.10.1021/acs.energyfuels.0c03685
2.
Cesaro
,
Z.
,
Ives
,
M.
,
Nayak-Luke
,
R.
,
Mason
,
M.
, and
Bañares-Alcántara
,
R.
,
2021
, “
Ammonia to Power: Forecasting the Levelized Cost of Electricity From Green Ammonia in Large-Scale Power Plants
,”
Appl. Energy
,
282
, p.
116009
.10.1016/j.apenergy.2020.116009
3.
Verkamp
,
F.
,
Hardin
,
M.
, and
Williams
,
J.
,
1967
, “
Ammonia Combustion Properties and Performance in Gas-Turbine Burners
,”
Symp. (Int.) Combust.
,
11
(
1
), pp.
985
992
.10.1016/S0082-0784(67)80225-X
4.
Khateeb
,
A. A.
,
Guiberti
,
T. F.
,
Zhu
,
X.
,
Younes
,
M.
,
Jamal
,
A.
, and
Roberts
,
W. L.
,
2020
, “
Stability Limits and NO Emissions of Technically-Premixed Ammonia-Hydrogen-Nitrogen-Air Swirl Flames
,”
Int. J. Hydrogen Energy
,
45
(
41
), pp.
22008
22018
.10.1016/j.ijhydene.2020.05.236
5.
Mei
,
B.
,
Zhang
,
J.
,
Shi
,
X.
,
Xi
,
Z.
, and
Li
,
Y.
,
2021
, “
Enhancement of Ammonia Combustion With Partial Fuel Cracking Strategy: Laminar Flame Propagation and Kinetic Modeling Investigation of NH3/H2/N2/Air Mixtures up to 10 atm
,”
Combust. Flame
,
231
, p.
111472
.10.1016/j.combustflame.2021.111472
6.
Wiseman
,
S.
,
Rieth
,
M.
,
Gruber
,
A.
,
Dawson
,
J. R.
, and
Chen
,
J. H.
,
2021
, “
A Comparison of the Blow-Out Behavior of Turbulent Premixed Ammonia/Hydrogen/Nitrogen-Air and Methane–Air Flames
,”
Proc. Combust. Inst.
,
38
(
2
), pp.
2869
2876
.10.1016/j.proci.2020.07.011
7.
Rieth
,
M.
,
Gruber
,
A.
,
Williams
,
F. A.
, and
Chen
,
J. H.
,
2022
, “
Enhanced Burning Rates in Hydrogen-Enriched Turbulent Premixed Flames by Diffusion of Molecular and Atomic Hydrogen
,”
Combust. Flame
,
239
, p.
111740
.10.1016/j.combustflame.2021.111740
8.
Pugh
,
D.
,
Runyon
,
J.
,
Bowen
,
P.
,
Giles
,
A.
,
Valera-Medina
,
A.
,
Marsh
,
R.
,
Goktepe
,
B.
, and
Hewlett
,
S.
,
2021
, “
An Investigation of Ammonia Primary Flame Combustor Concepts for Emissions Reduction With OH*, NH2* and NH* Chemiluminescence at Elevated Conditions
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6451
6459
.10.1016/j.proci.2020.06.310
9.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.10.1016/j.proci.2016.05.007
10.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2010
, “
The Combined Dynamics of Swirler and Turbulent Premixed Swirling Flames
,”
Combust. Flame
,
157
(
9
), pp.
1698
1717
.10.1016/j.combustflame.2010.02.011
11.
Gatti
,
M.
,
Gaudron
,
R.
,
Mirat
,
C.
,
Zimmer
,
L.
, and
Schuller
,
T.
,
2019
, “
Impact of Swirl and Bluff-Body on the Transfer Function of Premixed Flames
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5197
5204
.10.1016/j.proci.2018.06.148
12.
Komarek
,
T.
, and
Polifke
,
W.
,
2010
, “
Impact of Swirl Fluctuations on the Flame Response of a Perfectly Premixed Swirl Burner
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
061503
.10.1115/1.4000127
13.
Polifke
,
W.
, and
Lawn
,
C.
,
2007
, “
On the Low-Frequency Limit of Flame Transfer Functions
,”
Combust. Flame
,
151
(
3
), pp.
437
451
.10.1016/j.combustflame.2007.07.005
14.
Di Sabatino
,
F.
,
Guiberti
,
T. F.
,
Moeck
,
J. P.
,
Roberts
,
W. L.
, and
Lacoste
,
D. A.
,
2020
, “
Fuel and Equivalence Ratio Effects on Transfer Functions of Premixed Swirl Flames
,”
J. Propul. Power
,
36
(
2
), pp.
271
284
.10.2514/1.B37537
15.
Jones
,
B.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2011
, “
Flame Response Mechanisms Due to Velocity Perturbations in a Lean Premixed Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
133
(
2
), p.
021503
.10.1115/1.4001996
16.
Palies
,
P.
,
Schuller
,
T.
,
Durox
,
D.
,
Gicquel
,
L. Y. M.
, and
Candel
,
S.
,
2011
, “
Acoustically Perturbed Turbulent Premixed Swirling Flames
,”
Phys. Fluids
,
23
(
3
), p.
037101
.10.1063/1.3553276
17.
Acharya
,
V.
, and
Lieuwen
,
T.
,
2015
, “
Effect of Azimuthal Flow Fluctuations on Flow and Flame Dynamics of Axisymmetric Swirling Flames
,”
Phys. Fluids
,
27
(
10
), p.
105106
.10.1063/1.4933135
18.
Balachandran
,
R.
,
Ayoola
,
B.
,
Kaminski
,
C.
,
Dowling
,
A.
, and
Mastorakos
,
E.
,
2005
, “
Experimental Investigation of the Nonlinear Response of Turbulent Premixed Flames to Imposed Inlet Velocity Oscillations
,”
Combust. Flame
,
143
(
1–2
), pp.
37
55
.10.1016/j.combustflame.2005.04.009
19.
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2005
, “
Combustion Dynamics of Inverted Conical Flames
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
1717
1724
.10.1016/j.proci.2004.08.067
20.
Æsøy
,
E.
,
Aguilar
,
J. G.
,
Wiseman
,
S.
,
Bothien
,
M. R.
,
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2020
, “
Scaling and Prediction of Transfer Functions in Lean Premixed H2/CH4-Flames
,”
Combust. Flame
,
215
, pp.
269
282
.10.1016/j.combustflame.2020.01.045
21.
Kim
,
K. T.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2010
, “
The Dynamic Response of Turbulent Dihedral V Flames: An Amplification Mechanism of Swirling Flames
,”
Combust. Sci. Technol.
,
183
(
2
), pp.
163
179
.10.1080/00102202.2010.508477
22.
Nygård
,
H. T.
, and
Worth
,
N. A.
,
2021
, “
Flame Transfer Functions and Dynamics of a Closely Confined Premixed Bluff Body Stabilized Flame With Swirl
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041011
.10.1115/1.4049513
23.
Kim
,
K. T.
, and
Santavicca
,
D. A.
,
2013
, “
Generalization of Turbulent Swirl Flame Transfer Functions in Gas Turbine Combustors
,”
Combust. Sci. Technol.
,
185
(
7
), pp.
999
1015
.10.1080/00102202.2012.752734
24.
De Rosa
,
A. J.
,
Peluso
,
S. J.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2016
, “
The Effect of Confinement on the Structure and Dynamic Response of Lean-Premixed, Swirl-Stabilized Flames
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
061507
.10.1115/1.4031885
25.
Fleifil
,
M.
,
Annaswamy
,
A.
,
Ghoneim
,
Z.
, and
Ghoniem
,
A.
,
1996
, “
Response of a Laminar Premixed Flame to Flow Oscillations: A Kinematic Model and Thermoacoustic Instability Results
,”
Combust. Flame
,
106
(
4
), pp.
487
510
.10.1016/0010-2180(96)00049-1
26.
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2003
, “
A Unified Model for the Prediction of Laminar Flame Transfer Functions: Comparisons Between Conical and V-Flame Dynamics
,”
Combust. Flame
,
134
(
1–2
), pp.
21
34
.10.1016/S0010-2180(03)00042-7
27.
Palies
,
P.
,
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2011
, “
Modeling of Premixed Swirling Flames Transfer Functions
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2967
2974
.10.1016/j.proci.2010.06.059
28.
Dupuy
,
F.
,
Gatti
,
M.
,
Mirat
,
C.
,
Gicquel
,
L.
,
Nicoud
,
F.
, and
Schuller
,
T.
,
2020
, “
Combining Analytical Models and LES Data to Determine the Transfer Function From Swirled Premixed Flames
,”
Combust. Flame
,
217
, pp.
222
236
.10.1016/j.combustflame.2020.03.026
29.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2011
, “
Acoustic–Convective Mode Conversion in an Aerofoil Cascade
,”
J. Fluid Mech.
,
672
, pp.
545
569
.10.1017/S0022112010006142
30.
Cuquel
,
A.
,
Durox
,
D.
, and
Schuller
,
T.
,
2013
, “
Scaling the Flame Transfer Function of Confined Premixed Conical Flames
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1007
1014
.10.1016/j.proci.2012.06.056
31.
Birbaud
,
A.
,
Durox
,
D.
,
Ducruix
,
S.
, and
Candel
,
S.
,
2007
, “
Dynamics of Confined Premixed Flames Submitted to Upstream Acoustic Modulations
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1257
1265
.10.1016/j.proci.2006.07.122
32.
De Rosa
,
A. J.
,
Peluso
,
S. J.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2018
, “
Lean-Premixed, Swirl-Stabilized Flame Response: Flame Structure and Response as a Function of Confinement
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
031504
.10.1115/1.4037925
33.
Tay-Wo-Chong
,
L.
, and
Polifke
,
W.
,
2013
, “
Large Eddy Simulation-Based Study of the Influence of Thermal Boundary Condition and Combustor Confinement on Premix Flame Transfer Functions
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
021502
.10.1115/1.4007734
34.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2013
, “
Modal Dynamics of Self-Excited Azimuthal Instabilities in an Annular Combustion Chamber
,”
Combust. Flame
,
160
(
11
), pp.
2476
2489
.10.1016/j.combustflame.2013.04.031
35.
Jiang
,
Y.
,
Gruber
,
A.
,
Seshadri
,
K.
, and
Williams
,
F.
,
2020
, “
An Updated Short Chemical-Kinetic Nitrogen Mechanism for Carbon-Free Combustion Applications
,”
Int. J. Energy Res.
,
44
(
2
), pp.
795
810
.10.1002/er.4891
36.
Frenklach
,
M.
,
Wang
,
H.
,
Goldenberg
,
M.
,
Smith
,
G. P.
,
Golden
,
D. M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Gardiner
,
W. C.
, and
Lissianski
,
V.
,
1995
, “
GRI-Mech: An Optimized Detailed Chemical Reaction Mechanism for Methane Combustion
,” Gas Research Institute, Chicago, IL, Report No.
GRI-95/0058
.https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/PB96137054.xhtml
37.
Indlekofer
,
T.
,
Ahn
,
B.
,
Kwah
,
Y. H.
,
Wiseman
,
S.
,
Mazur
,
M.
,
Dawson
,
J. R.
, and
Worth
,
N. A.
,
2021
, “
The Effect of Hydrogen Addition on the Amplitude and Harmonic Response of Azimuthal Instabilities in a Pressurized Annular Combustor
,”
Combust. Flame
,
228
, pp.
375
387
.10.1016/j.combustflame.2021.02.015
38.
Åbom
,
M.
,
1991
, “
Measurement of the Scattering-Matrix of Acoustical Two-Ports
,”
Mech. Syst. Signal Process.
,
5
(
2
), pp.
89
104
.10.1016/0888-3270(91)90017-Y
39.
Æsøy
,
E.
,
2022
, “
The Effect of Hydrogen Enrichment on the Thermoacoustic Behaviour of Lean Premixed Flames
,”
Ph.D. thesis
,
Norwegian University of Science and Technology
, Trondheim, Norway.10.13140/RG.2.2.28523.00808
40.
Polifke
,
W.
,
2020
, “
Modeling and Analysis of Premixed Flame Dynamics by Means of Distributed Time Delays
,”
Prog. Energy Combust. Sci.
,
79
, p.
100845
.10.1016/j.pecs.2020.100845
41.
Steinbacher
,
T.
,
Albayrak
,
A.
,
Ghani
,
A.
, and
Polifke
,
W.
,
2019
, “
Consequences of Flame Geometry for the Acoustic Response of Premixed Flames
,”
Combust. Flame
,
199
, pp.
411
428
.10.1016/j.combustflame.2018.10.039
You do not currently have access to this content.