Abstract

Green hydrogen produced by electrolysis offers a high potential for reducing CO2 emissions and thus represents a promising approach for the decarbonization of aviation. However, propulsion systems based on direct hydrogen combustion require modified fuel injectors and combustion chambers to account for the particular combustion characteristics of hydrogen. Engineering those modifications requires the acquisition of experimental and numerical tools especially suited for this task and in the end validating them in a suitable environment. In this context, hydrogen combustion and its numerical simulation are presented with a dual-swirl burner in an optically accessible atmospheric combustor as an intermediate step. To ensure safe operation and to reduce the risk of flashback, fuel and air are injected nonpremixed. Good flame stability and mixing, which leads to potentially low NOx values, is achieved by introducing a swirling motion into the flows. In this study, the combustor is operated under atmospheric pressure at a globally lean equivalence ratio. Measurements of OH* radical chemiluminescence as well as infrared (IR) radiation as marker of the hot water vapor distribution have been carried out to identify the flame location and shape. The configuration is further analyzed by means of reacting large-eddy-simulations (LES). The comparison of the simulation results with the experimental reference data shows that the flame lift of height and global flame spread are correctly predicted by the simulation for both operating conditions. However, the combustion model does not precisely capture the flame stabilization mechanism, leading to a radial offset of the flame front.

References

1.
Brewer
,
G. D.
,
1991
,
Hydrogen Aircraft Technology
,
CRC Press
, Boca Raton, FL.
2.
France
,
D.
,
1980
, “
Combustion Characteristics of Hydrogen
,”
Int. J. Hydrogen Energy
,
5
(
4
), pp.
369
374
.10.1016/0360-3199(80)90018-X
3.
Haglind
,
F.
, and
Singh
,
R.
,
2004
, “
Design of Aero Gas Turbines Using Hydrogen
,”
ASME J. Eng. Gas Turbines Power
,
128
(
4
), pp.
754
764
.10.1115/1.2179468
4.
Brewer
,
G. D.
,
1980
, “
Prospects for Hydrogen Aircraft
,”
SAE
Paper No. 800756.10.4271/800756
5.
Sosounov
,
V.
, and
Orlov
,
V.
,
1990
, “
Experimental Turbofan Using Liquid Hydrogen and Liquid Natural Gas as Fuel
,”
AIAA
Paper No. 90-2421.10.2514/6.90-2421
6.
Noble
,
D.
,
Wu
,
D.
,
Emerson
,
B.
,
Sheppard
,
S.
,
Lieuwen
,
T.
, and
Angello
,
L.
,
2021
, “
Assessment of Current Capabilities and Near-Term Availability of Hydrogen-Fired Gas Turbines Considering a Low-Carbon Future
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041002
.10.1115/1.4049346
7.
Agarwal
,
P.
,
Sun
,
X.
,
Gauthier
,
P. Q.
, and
Sethi
,
V.
,
2019
, “
Injector Design Space Exploration for an Ultra-Low NOx Hydrogen Micromix Combustion System
,”
ASME
Paper No. GT2019-90833.10.1115/GT2019-90833
8.
Funke
,
H. H.-W.
,
Beckman
,
N.
,
Keinz
,
J.
, and
Horikawa
,
A.
,
2021
, “
30 Years of Dry Low NOx Micromix Combustor Research for Hydrogen-Rich Fuels: An Overview of Past and Present Activities
,”
ASME J. Eng. Gas Turbines Power
, 143(7), p. 071002.10.1115/1.4049764
9.
Horikawa
,
A.
,
Okada
,
K.
,
Yamaguchi
,
M.
,
Aoki
,
S.
,
Wirsum
,
M.
,
Funke
,
H. H.-W.
, and
Kusterer
,
K.
,
2021
, “
Combustor Development and Engine Demonstration of Micro-Mix Hydrogen Combustion Applied to M1A-17 Gas Turbine
,”
ASME
Paper No. GT2021-59666.10.1115/GT2021-59666
10.
Abbot
,
D.
,
Giannotta
,
A.
,
Sun
,
X.
,
Gauthier
,
P.
, and
Sethi
,
V.
,
2021
, “
Thermoacoustic Behaviour of a Hydrogen Micromix Aviation Gas Turbine Combustor Under Typical Flight Conditions
,”
ASME
Paper No. GT2021-59844.10.1115/GT2021-59844
11.
Sun
,
X.
,
Abbott
,
D.
,
Vir Singh
,
A.
,
Gauthier
,
P.
, and
Sethi
,
B.
,
2021
, “
Numerical Investigation of Potential Cause of Instabilities in a Hydrogen Micromix Injector Array
,”
ASME
Paper No. GT2021-59842.10.1115/GT2021-59842
12.
Chterev
,
I.
, and
Boxx
,
I.
,
2021
, “
Effect of Hydrogen Enrichment on the Dynamics of a Lean Technically Premixed Elevated Pressure Flame
,”
Combust. Flame
,
225
, pp.
149
159
.10.1016/j.combustflame.2020.10.033
13.
Lam
,
K.-K.
,
Geipel
,
P.
, and
Larfeldt
,
J.
,
2014
, “
Hydrogen Enriched Combustion Testing of Siemens Industrial SGT-400 at Atmospheric Conditions
,”
ASME J. Eng. Gas Turbines Power
,
137
(
2
), p.
021502
.10.1115/1.4028209
14.
Reichel
,
T. G.
,
Goeckeler
,
K.
, and
Paschereit
,
O.
,
2015
, “
Investigation of Lean Premixed Swirl-Stabilized Hydrogen Burner With Axial Air Injection Using OH-PLIF Imaging
,”
ASME J. Eng. Gas Turbines Power
, 137(11), p. 111513.10.1115/1.4031181
15.
Mira
,
D.
,
Lehmkuhl
,
O.
,
Both
,
A.
,
Stathopoulos
,
P.
,
Tanneberger
,
T.
,
Reichel
,
T. G.
,
Paschereit
,
C. O.
,
Vázquez
,
M.
, and
Houzeaux
,
G.
,
2020
, “
Numerical Characterization of a Premixed Hydrogen Flame Under Conditions Close to Flashback
,”
Flow, Turbul. Combust.
,
104
(
2–3
), pp.
479
507
.10.1007/s10494-019-00106-z
16.
Capurso
,
T.
,
Laera
,
D.
,
Riber
,
E.
, and
Cuenot
,
B.
,
2023
, “
NOx Pathways in Lean Partially Premixed Swirling H2–Air Turbulent Flame
,”
Combust. Flame
,
248
, p.
112581
.10.1016/j.combustflame.2022.112581
17.
Marragou
,
S.
,
Magnes
,
H.
,
Poinsot
,
T.
,
Selle
,
L.
, and
Schuller
,
T.
,
2022
, “
Stabilization Regimes and Pollutant Emissions From a Dual Fuel CH4/H2 and Dual Swirl Low NOx Burner
,”
Int. J. Hydrogen Energy
,
47
(
44
), pp.
19275
19288
.10.1016/j.ijhydene.2022.04.033
18.
Leroy
,
M.
,
Mirat
,
C.
,
Renaud
,
A.
, and
Vicquelin
,
R.
,
2022
, “
Stabilization of Low-NOx Hydrogen Flames on a Dual-Swirl Coaxial Injector
,”
ASME J. Eng. Gas Turbines Power
,
145
(
2
), p.
021021
.10.1115/1.4055711
19.
Aniello
,
A.
,
Laera
,
D.
,
Marragou
,
S.
,
Magnes
,
H.
,
Selle
,
L.
,
Schuller
,
T.
, and
Poinsot
,
T.
,
2023
, “
Experimental and Numerical Investigation of Two Flame Stabilization Regimes Observed in a Dual Swirl H2-Air Coaxial Injector
,”
Combust. Flame
,
249
, p.
112595
.10.1016/j.combustflame.2022.112595
20.
Knudsen
,
E.
, and
Pitsch
,
H.
,
2009
, “
A General Flamelet Transformation Useful for Distinguishing Between Premixed and Non-Premixed Modes of Combustion
,”
Combust. Flame
,
156
(
3
), pp.
678
696
.10.1016/j.combustflame.2008.10.021
21.
Illana
,
E.
,
Mira
,
D.
, and
Mura
,
A.
,
2021
, “
An Extended Flame Index Partitioning for Partially Premixed Combustion
,”
Combust. Theory Modell.
,
25
(
1
), pp.
121
157
.10.1080/13647830.2020.1841912
22.
Yamashita
,
H.
,
Shimada
,
M.
, and
Takeno
,
T.
,
1996
, “
A Numerical Study on Flame Stability at the Transition Point of Jet Diffusion Flames
,”
Symp. (Int.) Combust.
,
26
(
1
), pp.
27
34
.10.1016/S0082-0784(96)80196-2
23.
Gövert
,
S.
,
Lipkowicz
,
J. T.
, and
Janus
,
B.
,
2023
, “
Compressible Large Eddy Simulation of Thermoacoustic Instabilities in the PRECCINSTA Combustor Using Flamelet Generated Manifolds With Dynamic Thickened Flame Model
,”
ASME J. Eng. Gas Turbines Power
,
146
(
1
), p.
011011
.10.1115/1.4063419
24.
Behrendt
,
T.
,
2003
, “
Strömung und Verbrennung in einem neuen Düsenkonzept für die magere Vormischverbrennung in Fluggasturbinen
,” Ph.D. thesis,
Ruhr University Bochum
,
Bochum, Germany
.
25.
Behrendt
,
T.
,
Hassa
,
C.
,
Mohamed
,
A.
, and
Faleni
,
J.-P.
,
2008
, “
In Situ Measurement and Validation of Gaseous Species Concentrations of a Gas Turbine Model Combustor by Tunable Diode Laser Absorption Spectroscopy (TDLAS)
,”
ASME
Paper No. GT2008-51258.10.1115/GT2008-51258
26.
Gibson
,
S.
,
Hickstein
,
D. D.
,
Yurchak
,
R.
,
Ryazanov
,
M.
,
Das
,
D.
, and
Shih
,
G.
,
2022
, “
PyAbel/PyAbel: v0.8.5
,” European Organization for Nuclear Research, Geneva, Switzerland, accessed Dec. 19, 2023, https://zenodo.org/records/5888391
27.
Hardalupas
,
Y.
, and
Orain
,
M.
,
2004
, “
Local Measurements of the Time-Dependent Heat Release Rate and Equivalence Ratio Using Chemiluminescent Emission From a Flame
,”
Combust. Flame
,
139
(
3
), pp.
188
207
.10.1016/j.combustflame.2004.08.003
28.
Koomen
,
J.
,
Dammers
,
T.
,
Demougeot
,
N.
,
Stuttaford
,
P.
,
Heinze
,
J.
,
Stockhausen
,
G.
, and
Fleing
,
C.
,
2022
, “
High Pressure Testing With Optical Diagnostics of a Hydrogen Retrofit Solution to Eliminate Carbon Emissions
,”
ASME
Paper No. GT2022-82652.10.1115/GT2022-82652
29.
Rivière
,
P.
, and
Soufiani
,
A.
,
2012
, “
Updated Band Model Parameters for H2O, CO2, CH4 and CO Radiation at High Temperature
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3349
3358
.10.1016/j.ijheatmasstransfer.2012.03.019
30.
van Oijen
,
J.
, and
de Goey
,
L.
,
2000
, “
Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Technol.
,
161
(
1
), pp.
113
137
.10.1080/00102200008935814
31.
Goodwin
,
D. G.
,
Moffat
,
H. K.
,
Schoegl
,
I.
,
Speth
,
R. L.
, and
Weber
,
B. W.
,
2021
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Version 2.5.1, European Organization for Nuclear Research, Geneva, Switzerland.10.5281/zenodo.4527812
32.
San Diego Mechanism, 2024, “
Chemical-Kinetic Mechanisms for Combustion Applications
,” San Diego Mechanism, Mechanical and Aerospace Engineering (Combustion Research),
University of California at San Diego
, San Diego, CA, accessed July 2, 2023, https://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html
33.
Kathrotia
,
T.
,
Fikri
,
M.
,
Bozkurt
,
M.
,
Hartmann
,
M.
,
Riedel
,
U.
, and
Schulz
,
C.
,
2010
, “
Study of the H+O+M Reaction Forming OH∗: Kinetics of OH∗ Chemiluminescence in Hydrogen Combustion Systems
,”
Combust. Flame
,
157
(
7
), pp.
1261
1273
.10.1016/j.combustflame.2010.04.003
34.
Legier
,
J. P.
,
Poinsot
,
T.
, and
Veynante
,
D.
,
2000
, “
Dynamically Thickened Flame LES Model for Premixed and Non-Premixed Turbulent Combustion
,”
Proceedings of the Summer Program 2000
, Stanford, CA,
Center for Turbulence Research
, pp.
157
168
.https://web.stanford.edu/group/ctr/ctrsp00/poinsot.pdf
35.
Wang
,
G.
,
Boileau
,
M.
, and
Veynante
,
D.
,
2011
, “
Implementation of a Dynamic Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Combust. Flame
,
158
(
11
), pp.
2199
2213
.10.1016/j.combustflame.2011.04.008
36.
Charlette
,
F.
,
Meneveau
,
C.
, and
Veynante
,
D.
,
2002
, “
A Power-Law Flame Wrinkling Model for LES of Premixed Turbulent Combustion—Part I: Non-Dynamic Formulation and Initial Tests
,”
Combust. Flame
,
131
(
1–2
), pp.
159
180
.10.1016/S0010-2180(02)00400-5
37.
Durand
,
L.
, and
Polifke
,
W.
,
2007
, “
Implementation of the Thickened Flame Model for Large Eddy Simulation of Turbulent Premixed Combustion in a Commercial Solver
,”
ASME
Paper No. GT2007-28188.10.1115/GT2007-28188
38.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
39.
Shima
,
N.
,
Kuya
,
Y.
,
Tamaki
,
Y.
, and
Kawai
,
S.
,
2021
, “
Preventing Spurious Pressure Oscillations in Split Convective Form Discretization for Compressible Flows
,”
J. Comput. Phys.
,
427
, p.
110060
.10.1016/j.jcp.2020.110060
40.
Burg
,
C.
,
2005
, “
Higher Order Variable Extrapolation for Unstructured Finite Volume RANS Flow Solvers
,”
AIAA
Paper No. 2005-4999.10.2514/6.2005-4999
41.
Venkatakrishnan
,
V.
,
1993
, “
On the Accuracy of Limiters and Convergence to Steady State Solutions
,”
AIAA
Paper No. 93-880.10.2514/6.93-880
42.
Swanson
,
R. C.
, and
Turkel
,
E.
,
1992
, “
On Central-Difference and Upwind Schemes
,”
J. Comput. Phys.
,
101
(
2
), pp.
292
306
.10.1016/0021-9991(92)90007-L
43.
Jameson
,
A.
,
2017
, “
Origins and Further Development of the Jameson–Schmidt–Turkel Scheme
,”
AIAA J.
,
55
(
5
), pp.
1487
1510
.10.2514/1.J055493
44.
Lipkowicz
,
J. T.
,
Gövert
,
S.
, and
Janus
,
B.
,
2024
, “
Adaptation of the Low Dissipation Low Dispersion Scheme for Reactive Multi Component Flows on Unstructured Grids Using Density-Based Solvers
,”
ASME
Paper No. GT2024-127496.
45.
Becker
,
K. C.
, and
Ashcroft
,
G.
,
2014
, “
A Comparative Study of Gradient Reconstruction Methods for Unstructured Meshes With Application to Turbomachinery Flows
,”
AIAA
Paper No. 2014-0069.10.2514/6.2014-0069
46.
Thomas
,
J. L.
,
Diskin
,
B.
, and
Nishikawa
,
H.
,
2011
, “
A Critical Study of Agglomerated Multigrid Methods for Diffusion on Highly-Stretched Grids
,”
Comput. Fluids
,
41
(
1
), pp.
82
93
.10.1016/j.compfluid.2010.09.023
47.
Kersken
,
H.-P.
,
Ashcroft
,
G.
,
Frey
,
C.
,
Wolfrum
,
N.
, and
Korte
,
D.
,
2014
, “
Nonreflecting Boundary Conditions for Aeroelastic Analysis in Time and Frequency Domain 3D RANS Solvers
,”
ASME
Paper No. GT2014-25499.10.1115/GT2014-25499
48.
Reichardt
,
H.
,
1951
, “
Vollständige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen
,”
ZAMM - J. Appl. Math. Mech./Z. Angew. Math. Mech.
,
31
(
7
), pp.
208
219
.10.1002/zamm.19510310704
49.
Beerer
,
D.
,
McDonell
,
V.
,
Therkelsen
,
P.
, and
Cheng
,
R. K.
,
2013
, “
Flashback and Turbulent Flame Speed Measurements in Hydrogen/Methane Flames Stabilized by a Low-Swirl Injector at Elevated Pressures and Temperatures
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
), p.
031502
.10.1115/1.4025636
You do not currently have access to this content.