Abstract

The present study aims to experimentally characterize the performance of a rotating detonation combustion (RDC) system integrated with a pressurized downstream plenum to simulate the high-pressure inlet conditions of power-generating gas turbines. A thorough understanding of the operational behavior including wave mode behavior, static pressure profile along the combustor length, and dynamic features of pressure fluctuations is crucial for successful integration of RDC with the turbine. In this study, two RDC configurations are investigated, RDC with a constant area annulus and RDC with a converging nozzle. In both cases, the RDC flow exited into a plenum chamber kept at pressures varying from 155 kPa to 330 kPa. RDC was operated on methane and oxygen-enriched air to represent reactants used in land-based power generation. Experiments were conducted for the two RDCs configurations operated at three reactant mass flow rates (0.23, 0.32, and 0.46 kg/s). The RDC performance is characterized by time-averaged static pressure measurements, and wave velocity determined by ionization probes. In addition, dynamic pressure measurements were recorded both inside and near the exit of RDC channel to investigate wave interactions between RDC and downstream plenum. Results show that the RDC with the converging nozzle achieved superior performance while minimizing detrimental interactions with the reflected shock and/or acoustic waves from the downstream plenum.

References

1.
Kailasanath
,
K.
,
2020
, “
Recent Developments in the Research on Pressure-Gain Combustion Devices
,”
Innovations in Sustainable Energy Cleaner Environment
, Springer Nature Singapore Pte Ltd, Singapore, pp.
3
21
.10.1007/978-981-13-9012-8_1
2.
Neumann
,
N.
,
Berthold
,
A.
,
Haucke
,
F.
,
Peitsch
,
D.
, and
Stathopoulos
,
P.
,
2021
, “
Pulsed Impingement Turbine Cooling and Its Effect on the Efficiency of Gas Turbines With Pressure Gain Combustion
,”
ASME J. Turbomach.
,
143
(
7
), p. 071016.10.1115/1.4050361
3.
Gulen
,
S.
,
2017
, “
Pressure Gain Combustion Advantage in Land-Based Electric Power Generation
,”
J. Global Power Propul. Soc.
,
1
, pp.
288
302
.10.22261/JGPPS.K4MD26
4.
Wolański
,
P.
,
2013
, “
Detonative Propulsion
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
125
158
.10.1016/j.proci.2012.10.005
5.
Kailasanath
,
K.
,
2011
, “
The Rotating Detonation-Wave Engine Concept: A Brief Status Report
,”
AIAA
Paper No. 2011-580.10.2514/6.2011-580
6.
Kailasanath
,
K.
,
2017
, “
Recent Developments in the Research on Rotating-Detonation-Wave Engines
,”
AIAA
Paper No. 2017-0784.10.2514/6.2017-0784
7.
Lu
,
F. K.
, and
Braun
,
E. M.
,
2014
, “
Rotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine Concepts
,”
J. Propul. Power
,
30
(
5
), pp.
1125
1142
.10.2514/1.B34802
8.
Kailasanath
,
K.
, and
Schwer
,
D.
,
2017
, “
High-Fidelity Simulations of Pressure-Gain Combustion Devices Based on Detonations
,”
J. Propul. Power
,
33
(
1
), pp.
153
162
.10.2514/1.B36169
9.
Anand
,
V.
, and
Gutmark
,
E.
,
2019
, “
Rotating Detonation Combustors and Their Similarities to Rocket Instabilities
,”
Prog. Energy Combust. Sci.
,
73
, pp.
182
234
.10.1016/j.pecs.2019.04.001
10.
Tobias
,
J.
,
Depperschmidt
,
D.
,
Welch
,
C.
,
Miller
,
R.
,
Uddi
,
M.
,
Agrawal
,
A. K.
, and
Daniel
,
R.
,
2019
, “
OH* Chemiluminescence Imaging of the Combustion Products From a Methane-Fueled Rotating Detonation Engine
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021021
.10.1115/1.4041143
11.
Welch
,
C.
,
Depperschmidt
,
D.
,
Miller
,
R.
,
Tobias
,
J.
,
Uddi
,
M.
,
Agrawal
,
A. K.
, and
Lowe
,
S.
,
2018
, “
Experimental Analysis of Wave Propagation in a Methane-Fueled Rotating Detonation Combustor
,”
ASME
Paper No. GT2018-77258.10.1115/GT2018-77258
12.
Tobias
,
J. R.
, and
Agrawal
,
A. K.
,
2022
, “
Flow Development in Radial Plane of Rotating Detonation Engine Integrated With Aerospike
,”
J. Propul. Power
, 39(3), pp.
1
13
.10.2514/1.B38874
13.
Miller
,
R.
,
Tobias
,
J.
,
Depperschmidt
,
D.
,
Bell
,
K.
,
Langner
,
D.
, and
Agrawal
,
A. K.
,
2019
, “
Rainbow Schlieren Imaging of Density Field in the Exhaust Flow of Rotating Detonation Combustion
,”
AIAA
Paper No. 2019-4380.10.2514/6.2019-4380
14.
Naples
,
A.
,
Hoke
,
J.
,
Battelle
,
R.
, and
Schauer
,
F.
,
2019
, “
T63 Turbine Response to Rotating Detonation Combustor Exhaust Flow
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021029
.10.1115/1.4041135
15.
Naples
,
A.
,
Hoke
,
J.
, and
Schauer
,
F.
,
2014
, “
Rotating Detonation Engine Interaction With an Annular Ejector
,”
AIAA
Paper No. 2014-0287.10.2514/6.2014-0287
16.
Depperschmidt
,
D. L.
,
2019
,
Investigation of Methane-Fueled Rotating Detonation Combustor Exhaust Flow Field Via Time-Resolved Particle Image Velocimetry
,
The University of Alabama
,
Tuscaloosa, AL
.
17.
Depperschmidt
,
D.
,
Miller
,
R.
,
Tobias
,
J.
,
Uddi
,
M.
,
Agrawal
,
A. K.
, and
Stout
,
J. B.
,
2019
, “
Time-Resolved PIV Diagnostics to Measure Flow Field Exiting Methane-Fueled Rotating Detonation Combustor
,”
AIAA
Paper No. 2019-1514.10.2514/6.2019-1514
18.
Zhou
,
S.
,
Ma
,
H.
,
Li
,
S.
,
Liu
,
D.
,
Yan
,
Y.
, and
Zhou
,
C.
,
2017
, “
Effects of a Turbine Guide Vane on Hydrogen-Air Rotating Detonation Wave Propagation Characteristics
,”
Int. J. Hydrogen Energy
,
42
(
31
), pp.
20297
20305
.10.1016/j.ijhydene.2017.06.115
19.
Liu
,
Z.
,
Braun
,
J.
, and
Paniagua
,
G.
,
2019
, “
Characterization of a Supersonic Turbine Downstream of a Rotating Detonation Combustor
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
031501
.10.1115/1.4040815
20.
Bach
,
E.
,
Stathopoulos
,
P.
,
Paschereit
,
C. O.
, and
Bohon
,
M. D.
,
2020
, “
Performance Analysis of a Rotating Detonation Combustor Based on Stagnation Pressure Measurements
,”
Combust. Flame
,
217
, pp.
21
36
.10.1016/j.combustflame.2020.03.017
21.
Wu
,
Y.
,
Weng
,
C.
,
Zheng
,
Q.
,
Wei
,
W.
, and
Bai
,
Q. J. E.
,
2021
, “
Experimental Research on the Performance of a Rotating Detonation Combustor With a Turbine Guide Vane
,”
Energy
,
218
, p.
119580
.10.1016/j.energy.2020.119580
22.
Bennewitz
,
J. W.
,
Bigler
,
B. R.
,
Ross
,
M. C.
,
Danczyk
,
S. A.
,
Hargus
,
W. A.
, Jr
,., and
Smith
,
R. D.
,
2021
, “
Performance of a Rotating Detonation Rocket Engine With Various Convergent Nozzles and Chamber Lengths
,”
Energies
,
14
(
8
), p.
2037
.10.3390/en14082037
23.
Bach
,
E.
,
Paschereit
,
C. O.
,
Stathopoulos
,
P.
, and
Bohon
,
M.
,
2020
, “
RDC Operation and Performance With Varying Air Injector Pressure Loss
,”
AIAA
Paper No. 2020-0199.10.2514/6.2020-0199
24.
Ge
,
G.
,
Deng
,
L.
,
Ma
,
H.
,
Liu
,
X.
,
Jin
,
L.
, and
Zhou
,
C. J. A. A.
,
2019
, “
Effect of Blockage Ratio on the Existence of Multiple Waves in Rotating Detonation Engine
,”
Acta Astronaut.
,
164
, pp.
230
240
.10.1016/j.actaastro.2019.08.007
25.
Fotia
,
M. L.
,
Schauer
,
F.
,
Kaemming
,
T.
, and
Hoke
,
J.
,
2016
, “
Experimental Study of the Performance of a Rotating Detonation Engine With Nozzle
,”
J. Propuls. Power
,
32
(
3
), pp.
674
681
.10.2514/1.B35913
26.
Roy
,
A.
,
Ferguson
,
D. H.
,
Sidwell
,
T.
,
O'Meara
,
B.
,
Strakey
,
P.
,
Bedick
,
C.
, and
Sisler
,
A.
,
2017
, “
Experimental Study of Rotating Detonation Combustor Performance Under Preheat and Back Pressure Operation
,”
AIAA
Paper No. 2017-1065.10.2514/6.2017-1065
27.
Roy
,
A.
,
Bedick
,
C. R.
,
Ferguson
,
D. H.
,
Sidwell
,
T.
, and
Strakey
,
P. A.
,
2019
, “
Investigating Instabilities in a Rotating Detonation Combustor Operating With Natural Gas–Hydrogen Fuel Blend—Effect of Air Preheat and Annulus Width
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
111017
.10.1115/1.4044980
28.
Talukdar
,
S.
,
Langner
,
D.
,
Gupta
,
A.
, and
Agrawal
,
A. K.
,
2023
, “
Flow Characterization of a Rotating Detonation Combustor Integrated With Various Convergent Nozzles
,”
AIAA
Paper No. 2023-1295.10.2514/6.2023-1295
29.
Langner
,
D.
,
Gupta
,
A.
,
Miller
,
R.
, and
Agrawal
,
A. K.
,
2022
, “
Design and Implementation of a Disk-Shaped Radial Rotating Detonation Engine With Integrated Aerospike
,”
AIAA
Paper No. 2022-0642.10.2514/6.2022-0642
30.
Anand
,
V.
,
George
,
A. S.
,
Driscoll
,
R.
, and
Gutmark
,
E.
,
2015
, “
Characterization of Instabilities in a Rotating Detonation Combustor
,”
Int. J. Hydrogen Energy
,
40
(
46
), pp.
16649
16659
.10.1016/j.ijhydene.2015.09.046
31.
Schwer
,
D.
, and
Kailasanath
,
K.
,
2012
, “
Feedback Into Mixture Plenums in Rotating Detonation Engines
,”
AIAA
Paper No. 2012-617.10.2514/6.2012-617
You do not currently have access to this content.