Abstract

Laser-Induced Grating Spectroscopy (LIGS) was applied in a high-pressure combustion facility. Instantaneous (sub-μs), spatially resolved (within 5 mm) measurements of temperature and molar fractions of water were obtained using thermal and electrostrictive LIGS signals. Temperatures up to 1800 K and water molar fractions between 0.01 and 0.12 were measured. A new analytic approach was developed to extract temperature from the frequencies of the measured signal within the flame brush region, where mixtures contain both burnt and unburnt gases. Mean product temperatures are shown to be 8% lower than the adiabatic temperatures for the nominal equivalence ratio, and 14% higher than measurements made with a thermocouple, uncorrected for radiation losses. This work represents the first application of LIGS to a high-pressure, turbulent swirling flame, opening up the potential for future uses in other real-world applications. Challenges associated with the deployment of the technique are described as are potential measures to overcome these difficulties.

References

1.
Aldén
,
M.
,
Bood
,
J.
,
Li
,
Z.
, and
Richter
,
M.
,
2011
, “
Visualization and Understanding of Combustion Processes Using Spatially and Temporally Resolved Laser Diagnostic Techniques
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
69
97
.10.1016/j.proci.2010.09.004
2.
Jeffries
,
J. B.
, and
Kohse-Hoinghaus
,
K.
,
2002
,
Applied Combustion Diagnostics
,
Taylor & Francis
, CRC Press, Boca Raton, FL.10.1201/9781498719414
3.
Eckbreth
,
A. C.
,
1996
,
Laser Diagnostics for Combustion Temperature and Species
, 3rd ed.,
CRC Press
, Boca Raton, FL.10.1201/9781003077251
4.
Williams
,
B.
,
Edwards
,
M.
,
Stone
,
R.
,
Williams
,
J.
, and
Ewart
,
P.
,
2014
, “
High Precision in-Cylinder Gas Thermometry Using Laser Induced Gratings: Quantitative Measurement of Evaporative Cooling With Gasoline/Alcohol Blends in a GDI Optical Engine
,”
Combust. Flame
,
161
(
1
), pp.
270
279
.10.1016/j.combustflame.2013.07.018
5.
Scott
,
B.
,
Willman
,
C.
,
Williams
,
B.
,
Ewart
,
P.
,
Stone
,
R.
, and
Richardson
,
D.
,
2017
, “
In-Cylinder Temperature Measurements Using Laser Induced Grating Spectroscopy and Two-Colour PLIF
,”
SAE Int. J. Engines
,
10
(
4
), pp.
2191
2201
.10.4271/2017-24-0045
6.
Förster
,
F.
,
Crua
,
C.
,
Davy
,
M.
, and
Ewart
,
P.
,
2019
, “
Temperature Measurements Under Diesel Engine Conditions Using Laser Induced Grating Spectroscopy
,”
Combust. Flame
,
199
, pp.
249
257
.10.1016/j.combustflame.2018.10.017
7.
Stopper
,
U.
,
Meier
,
W.
,
Sadanandan
,
R.
,
Stöhr
,
M.
,
Aigner
,
M.
, and
Bulat
,
G.
,
2013
, “
Experimental Study of Industrial Gas Turbine Flames Including Quantification of Pressure Influence on Flow Field, Fuel/Air Premixing and Flame Shape
,”
Combust. Flame
,
160
(
10
), pp.
2103
2118
.10.1016/j.combustflame.2013.04.005
8.
Wen
,
X.
,
Hartl
,
S.
,
Dreizler
,
A.
,
Janicka
,
J.
, and
Hasse
,
C.
,
2021
, “
Flame Structure Analysis of Turbulent Premixed/Stratified Flames With H2 Addition Considering Differential Diffusion and Stretch Effects
,”
Proc. Combust. Inst.
,
38
(
2
), pp.
2993
3001
.10.1016/j.proci.2020.06.267
9.
Hanson
,
R. K.
, and
Davidson
,
D. F.
,
2014
, “
Recent Advances in Laser Absorption and Shock Tube Methods for Studies of Combustion Chemistry
,”
Prog. Energy Combust. Sci.
,
44
, pp.
103
114
.10.1016/j.pecs.2014.05.001
10.
Tang
,
H.
,
Yang
,
C.
,
Wang
,
G.
,
Guiberti
,
T. F.
, and
Magnotti
,
G.
,
2022
, “
Raman Spectroscopy for Quantitative Measurements of Temperature and Major Species in High-Pressure Non-Premixed NH3/H2/N2 Counterflow Flames
,”
Combust. Flame
,
237
, p.
111840
.10.1016/j.combustflame.2021.111840
11.
Lewis
,
I. R.
, and
Edwards
,
H.
,
2001
,
Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line
,
CRC Press
, Boca Raton, FL.10.1201/9781420029253
12.
Dibble
,
R. W.
, and
Hollenbach
,
R. E.
,
1981
, “
Laser Rayleigh Thermometry in Turbulent Flames
,”
Symp.(Int.) Combust.
, CONF-800809-.
Sandia Lab
,
Livermore, CA
, 18(1), pp.
1489
1499
.10.1016/S0082-0784(81)80151-8
13.
Daily
,
J. W.
,
1997
, “
Laser Induced Fluorescence Spectroscopy in Flames
,”
Prog. Energy Combust. Sci.
,
23
(
2
), pp.
133
199
.10.1016/S0360-1285(97)00008-7
14.
Roy
,
S.
,
Gord
,
J. R.
, and
Patnaik
,
A. K.
,
2010
, “
Recent Advances in Coherent Anti-Stokes Raman Scattering Spectroscopy: Fundamental Developments and Applications in Reacting Flows
,”
Prog. Energy Combust. Sci.
,
36
(
2
), pp.
280
306
.10.1016/j.pecs.2009.11.001
15.
Cummings
,
E. B.
,
1994
, “
Laser-Induced Thermal Acoustics: Simple Accurate Gas Measurements
,”
Opt. Lett.
,
19
(
17
), pp.
1361
1363
.10.1364/OL.19.001361
16.
Kiefer
,
J.
, and
Ewart
,
P.
,
2011
, “
Laser Diagnostics and Minor Species Detection in Combustion Using Resonant Four-Wave Mixing
,”
Prog. Energy Combust. Sci.
,
37
(
5
), pp.
525
564
.10.1016/j.pecs.2010.11.001
17.
Gutfleisch
,
M.
,
Shin
,
D. I.
,
Dreier
,
T.
, and
Danehy
,
P. M.
,
2000
, “
Mid-Infrared Laser-Induced Grating Experiments of C2H4 and NH3 From 0.1–2 MPa and 300–800 K
,”
Appl. Phys. B
,
71
(
5
), pp.
673
680
.10.1007/s003400000408
18.
Stevens
,
R.
, and
Ewart
,
P.
,
2004
, “
Single-Shot Measurement of Temperature and Pressure Using Laser-Induced Thermal Gratings With a Long Probe Pulse
,”
Appl. Phys. B
,
78
(
1
), pp.
111
117
.10.1007/s00340-003-1282-8
19.
Stampanoni-Panariello
,
A.
,
Kozlov
,
D. N.
,
Radi
,
P. P.
, and
Hemmerling
,
B.
,
2005
, “
Gas Phase Diagnostics by Laser-Induced Gratings I. Theory
,”
Appl. Phys. B
,
81
(
1
), pp.
101
111
.10.1007/s00340-005-1852-z
20.
Stampanoni-Panariello
,
A.
,
Kozlov
,
D. N.
,
Radi
,
P. P.
, and
Hemmerling
,
B.
,
2005
, “
Gas-Phase Diagnostics by Laser-Induced Gratings II. Experiments
,”
Appl. Phys. B
,
81
(
1
), pp.
113
129
.10.1007/s00340-005-1853-y
21.
Wu
,
Y.
,
Zhuzou
,
M.
,
Zhao
,
T.
,
Ding
,
P.
,
Sun
,
S.
,
Wang
,
J.
,
Liu
,
Z.
, and
Hu
,
B.
,
2022
, “
Gas-Phase Pressure Measurement Using Femtosecond Laser-Induced Grating Scattering Technique
,”
Opt. Lett.
,
47
(
7
), pp.
1859
1862
.10.1364/OL.454045
22.
Willman
,
C.
,
Le Page
,
L. M.
,
Ewart
,
P.
, and
Williams
,
B. A.
,
2021
, “
Pressure Measurement in Gas Flows Using Laser-Induced Grating Lifetime
,”
Appl. Opt.
,
60
(
15
), pp.
C131
C141
.10.1364/AO.419973
23.
Kozlov
,
D. N.
,
2005
, “
Simultaneous Characterization of Flow Velocity and Temperature Fields in a Gas Jet by Use of Electrostrictive Laser-Induced Gratings
,”
Appl. Phys. B
,
80
(
3
), pp.
377
387
.10.1007/s00340-004-1720-2
24.
Brown
,
M. S.
, and
Roberts
,
W. L.
,
1997
, “
Thermometry in Pressurized Sooting Flames Using Laser-Induced Gratings
,”
Optical Technology in Fluid, Thermal, and Combustion Flow III
,
SPIE
, San Diego, CA, pp.
492
503
.10.1117/12.279755
25.
Sahlberg
,
A.-L.
,
Hot
,
D.
,
Kiefer
,
J.
,
Aldén
,
M.
, and
Li
,
Z.
,
2017
, “
Mid-Infrared Laser-Induced Thermal Grating Spectroscopy in Flames
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
4515
4523
.10.1016/j.proci.2016.07.017
26.
De Domenico
,
F.
,
Guiberti
,
T. F.
,
Hochgreb
,
S.
,
Roberts
,
W. L.
, and
Magnotti
,
G.
,
2019
, “
Temperature and Water Measurements in Flames Using 1064 nm Laser-Induced Grating Spectroscopy (LIGS
,”
Combust. Flame
,
205
, pp.
336
344
.10.1016/j.combustflame.2019.04.016
27.
Hayakawa
,
A.
,
Yamagami
,
T.
,
Takeuchi
,
K.
,
Higuchi
,
Y.
,
Kudo
,
T.
,
Lowe
,
S.
,
Gao
,
Y.
,
Hochgreb
,
S.
, and
Kobayashi
,
H.
,
2019
, “
Quantitative Measurement of Temperature in Oxygen Enriched CH4/O2/N2 Premixed Flames Using Laser Induced Thermal Grating Spectroscopy (LITGS) Up to 1.0 MPa
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
1427
1434
.10.1016/j.proci.2018.08.009
28.
Hot
,
D.
,
Sahlberg
,
A.-L.
,
Aldén
,
M.
, and
Li
,
Z.
,
2021
, “
Mid-Infrared Laser-Induced Thermal Grating Spectroscopy of Hot Water Lines for Flame Thermometry
,”
Proc. Combust. Inst.
,
38
(
1
), pp.
1885
1893
.10.1016/j.proci.2020.06.289
29.
Brown
,
M. S.
,
Li
,
Y.
,
Roberts
,
W. L.
, and
Gord
,
J. R.
,
2003
, “
Analysis of Transient-Grating Signals for Reacting-Flow Applications
,”
Appl. Opt.
,
42
(
3
), pp.
566
578
.10.1364/AO.42.000566
30.
Stampanoni-Panariello
,
A.
,
Hemmerling
,
B.
, and
Hubschmid
,
W.
,
1998
, “
Temperature Measurements in Gases Using Laser-Induced Electrostrictive Gratings
,”
Appl. Phys. B: Lasers Opt.
,
67
(
1
), pp.
125
130
.10.1007/s003400050484
31.
Shah
,
P.
,
Le Page
,
L. M.
, and
Williams
,
B. A.
,
2023
, “
Development and Characterization of PILOT: A Transportable Instrument for Laser-Induced Grating Spectroscopy
,”
Opt. Express
,
31
(
4
), pp.
5872
5881
.10.1364/OE.482477
32.
Goodwin
,
D. G.
,
Speth
,
R. L.
,
Moffat
,
H. K.
, and
Weber
,
B. W.
,
2023
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Cantera Developers, Warrenville, IL.
33.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
, et al.,
1999
, “
Gri 3.0 Mechanism
,” Gas Research Institute, accessed Nov. 4, 2023, http://combustion.berkeley.edu/gri-mech/version30/text30.html
34.
Runyon
,
J.
,
Marsh
,
R.
,
Bowen
,
P.
,
Pugh
,
D.
,
Giles
,
A.
, and
Morris
,
S.
,
2018
, “
Lean Methane Flame Stability in a Premixed Generic Swirl Burner: Isothermal Flow and Atmospheric Combustion Characterization
,”
Exp. Therm. Fluid Sci.
,
92
, pp.
125
140
.10.1016/j.expthermflusci.2017.11.019
35.
Pugh
,
D.
,
Bowen
,
P.
,
Crayford
,
A.
,
Marsh
,
R.
,
Runyon
,
J.
,
Morris
,
S.
, and
Giles
,
A.
,
2018
, “
Catalytic Influence of Water Vapor on Lean Blow-Off and NOx Reduction for Pressurized Swirling Syngas Flames
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
061502
.10.1115/1.4038417
36.
Pugh
,
D.
,
Bowen
,
P.
,
Valera-Medina
,
A.
,
Giles
,
A.
,
Runyon
,
J.
, and
Marsh
,
R.
,
2019
, “
Influence of Steam Addition and Elevated Ambient Conditions on NOx Reduction in a Staged Premixed Swirling NH3/H2 Flame
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5401
5409
.10.1016/j.proci.2018.07.091
37.
Pugh
,
D. G.
,
Bowen
,
P. J.
,
Marsh
,
R.
,
Crayford
,
A. P.
,
Runyon
,
J.
,
Morris
,
S.
,
Valera-Medina
,
A.
, and
Giles
,
A.
,
2017
, “
Dissociative Influence of H2O Vapour/Spray on Lean Blowoff and NOx Reduction for Heavily Carbonaceous Syngas Swirling Flames
,”
Combust. Flame
,
177
, pp.
37
48
.10.1016/j.combustflame.2016.11.010
38.
Marsh
,
R.
,
Runyon
,
J.
,
Giles
,
A.
,
Morris
,
S.
,
Pugh
,
D.
,
Valera-Medina
,
A.
, and
Bowen
,
P.
,
2017
, “
Premixed Methane Oxycombustion in Nitrogen and Carbon Dioxide Atmospheres: Measurement of Operating Limits, Flame Location and Emissions. Proceedings of the Combustion Institute
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3949
3958
.10.1016/j.proci.2016.06.057
You do not currently have access to this content.