Abstract

One of the main causes of damage to gas turbine nozzle guide vanes (NGVs) is creep, which threatens the safety and reliability of gas turbines. Although creep life prediction has been applied to design and maintenance, creep damage is still frequently observed. Inadequate knowledge of the spatial–temporal evolution of creep damage makes it difficult to evaluate and accurately protect NGVs against abnormal creep damage. An integrated aero-thermal-structural simulation method based on conjugate heat transfer (CHT), computational fluid dynamics (CFD), and finite element method (FEM) is proposed to predict the spatial–temporal evolution of creep damage in the NGVs with internal cooling structures. In the temporal dimension, creep life is calculated by Larson–Miller parameters. In the spatial dimension, creep damage is characterized by a parametric modeling and CHT mesh generation procedure. The predicted results show that creep damage forms a groove or crack along the span at the leading edge of the suction side where the stress concentrates, which is similar to the frequently observed damage on the actual NGVs. The interactions between creep damage, flow, and heat transfer are discussed. The increase in turbine inlet temperature significantly shortens the time required for creep formation and evolution. It is suggested that creep damage through the NGV wall could radically alter the heat transfer and flow, resulting in a 30 K increase in average leading edge temperature. As a result, the evolution of creep damage is self-promotingly accelerated.

References

1.
Chaharlang
,
R.
,
Hajjari
,
E.
,
Baghal
,
S. M. L.
, and
Siahpoosh
,
M.
,
2019
, “
Premature Damage of the Second Stage Nozzle Guide Vanes of a Gas Turbine Made of Inconel 738 LC
,”
Eng. Failure Anal.
,
105
, pp.
803
816
.10.1016/j.engfailanal.2019.07.053
2.
Saturday
,
E. G.
,
Li
,
Y. G.
,
Ogiriki
,
E. A.
, and
Newby
,
M. A.
,
2017
, “
Creep-Life Usage Analysis and Tracking for Industrial Gas Turbines
,”
J. Propul. Power
,
33
(
5
), pp.
1305
1314
.10.2514/1.B35912
3.
Jarrett
,
A.
,
Erukulla
,
V. V.
, and
Koul
,
A. K.
,
2019
, “
Untwist Creep Analysis of Gas Turbine First Stage Blade
,”
ASME
Paper No. GT2019-90979. 10.1115/GT2019-90979
4.
Błachnio
,
J.
,
Spychała
,
J.
, and
Zasada
,
D.
,
2021
, “
Analysis of Structural Changes in a Gas Turbine Blade as a Result of High Temperature and Stress
,”
Eng. Failure Anal.
,
127
, p.
105554
.10.1016/j.engfailanal.2021.105554
5.
Li
,
Z.
,
Wen
,
Z.
,
Pei
,
H.
,
Yue
,
X.
,
Wang
,
P.
,
Ai
,
C.
, and
Yue
,
Z.
,
2021
, “
Creep Life Prediction for a Nickel-Based Single Crystal Turbine Blade
,”
Mech. Adv. Mater. Struct.
,
29
(
27
), pp.
6039
6052
.10.1080/15376494.2021.1972187
6.
Kraemer
,
K. M.
,
Mueller
,
F.
,
Kontermann
,
C.
, and
Oechsner
,
M.
,
2019
, “
Toward a Better Understanding of Crack Growth in Nickel-Cast Alloys Under Creep-Fatigue and Thermo-Mechanical Fatigue Conditions
,”
ASME J. Eng. Gas Turbines Power
,
142
(
1
), p.
011004
.10.1115/1.4045310
7.
Yousefabad
,
E. K.
,
Asadi
,
S.
,
Savadkouhi
,
P.
,
Sedaghat
,
O.
, and
Bakhshi
,
A.
,
2019
, “
The Effect of Non-Uniform Combustion Temperature Profile on Thermal Fatigue Cracking of an Air-Cooled Gas Turbine Vane
,”
Eng. Failure Anal.
,
105
, pp.
766
780
.10.1016/j.engfailanal.2019.07.008
8.
Kosieniak
,
E.
,
Biesiada
,
K.
,
Kaczorowski
,
J.
, and
Innocenti
,
M.
,
2012
, “
Corrosion Failures in Gas Turbine Hot Components
,”
J. Failure Anal. Prev.
,
12
(
3
), pp.
330
337
.10.1007/s11668-012-9571-3
9.
Cai
,
L.
,
Xiao
,
J.
,
Wang
,
S.
,
Gao
,
S.
,
Duan
,
J.
, and
Mao
,
J.
,
2017
, “
Gas-Particle Flows and Erosion Characteristic of Large Capacity Dry Top Gas Pressure Recovery Turbine
,”
Energy
,
120
, pp.
498
506
.10.1016/j.energy.2016.11.098
10.
Ogiriki
,
E. A.
,
Li
,
Y. G.
, and
Nikolaidis
,
T.
,
2016
, “
Prediction and Analysis of Impact of Thermal Barrier Coating Oxidation on Gas Turbine Creep Life
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
121501
.10.1115/1.4034020
11.
Zhu
,
L.
,
Hu
,
X.
,
Jiang
,
R.
,
Song
,
Y.
, and
Qu
,
S.
,
2019
, “
Experimental Investigation of Small Fatigue Crack Growth Due to Foreign Object Damage in Titanium Alloy TC4
,”
Mater. Sci. Eng.: A
,
739
, pp.
214
224
.10.1016/j.msea.2018.10.031
12.
Le Graverend
,
J. B.
,
Cormier
,
J.
,
Gallerneau
,
F.
,
Villechaise
,
P.
,
Kruch
,
S.
, and
Mendez
,
J.
,
2014
, “
A Microstructure-Sensitive Constitutive Modeling of the Inelastic Behavior of Single Crystal Nickel-Based Superalloys at Very High Temperature
,”
Int. J. Plast.
,
59
, pp.
55
83
.10.1016/j.ijplas.2014.03.004
13.
Fedelich
,
B.
,
Epishin
,
A.
,
Link
,
T.
,
Klingelhöffer
,
H.
,
Künecke
,
G.
, and
Portella
,
P. D.
,
2012
, “
Experimental Characterization and Mechanical Modeling of Creep Induced Rafting in Superalloys
,”
Comput. Mater. Sci.
,
64
, pp.
2
6
.10.1016/j.commatsci.2012.05.071
14.
Larson
,
F. R.
, and
Miller
,
J.
,
1952
, “
A Time-Temperature Relationship for Rupture and Creep Stresses
,”
Trans. Am. Soc. Mech. Eng.
,
74
(
5
), pp.
765
771
.10.1115/1.4015909
15.
Manson
,
S. S.
, and
Haferd
,
A. M.
,
1953
, “
A Linear Time-Temperature Relation for Extrapolation of Creep and Stress-Rupture Data
,”
Lewis Flight Propulsion Laboratory
,
Cleveland, OH
, Report No.
NACA-TN-2890
.https://digital.library.unt.edu/ark:/67531/metadc56933/
16.
Manson
,
S.
, and
Succop
,
G.
,
1956
, “
Stress-Rupture Properties of Inconel 700 and Correlation on the Basis of Several Time-Temperature Parameters
,”
Proceedings of the Symposium on Metallic Materials for Service at Temperatures Above 1600 F
, Philadelphia, PA, pp.
40
46
.https://www.astm.org/stp44986s.html
17.
Lemaitre
,
J.
,
1984
, “
How to Use Damage Mechanics
,”
Nucl. Eng. Des.
,
80
(
2
), pp.
233
245
.10.1016/0029-5493(84)90169-9
18.
Lee
,
J.-M.
,
Wee
,
S.
,
Yun
,
J.
,
Song
,
H.
,
Kim
,
Y.
,
Koo
,
J.-M.
, and
Seok
,
C.-S.
,
2018
, “
Life Prediction of IN738 LC Considering Creep Damage Under Low Cycle Fatigue
,”
Int. J. Precis. Eng. Manuf.
,
5
(
2
), pp.
311
316
.10.1007/s40684-018-0033-6
19.
Huo
,
J.
,
Sun
,
D.
,
Wu
,
H.
,
Wang
,
W.
, and
Xue
,
L.
,
2019
, “
Multi-Axis Low-Cycle Creep/Fatigue Life Prediction of High-Pressure Turbine Blades Based on a New Critical Plane Damage Parameter
,”
Eng. Failure Anal.
,
106
, p.
104159
.10.1016/j.engfailanal.2019.104159
20.
Shigeyama
,
H.
,
Okada
,
M.
,
Takahashi
,
T.
,
Yamada
,
S.
,
Sakai
,
T.
, and
Fujioka
,
T.
,
2017
, “
Morphological Changes in γ' Phase by Creep, Aging and Aging After Creep for Polycrystalline Nickel-Based Superalloy
,”
ASME
Paper No. GT2017-64104. 10.1115/GT2017-64104
21.
Lu
,
C.
,
Fei
,
C.-W.
,
Feng
,
Y.-W.
,
Zhao
,
Y.-J.
,
Dong
,
X.-W.
, and
Choy
,
Y.-S.
,
2021
, “
Probabilistic Analyses of Structural Dynamic Response With Modified Kriging-Based Moving Extremum Framework
,”
Eng. Failure Anal.
,
125
, p.
105398
.10.1016/j.engfailanal.2021.105398
22.
Shrivastava
,
S.
,
Andrade
,
P.
,
Carpenter
,
V.
,
Masal
,
R.
,
Nakod
,
P.
, and
Orsino
,
S.
,
2019
, “
Multi-Physics Simulation Based Approach for Life Prediction of a Gas Turbine Combustor Liner
,”
ASME
Paper No. GT2019-90897. 10.1115/GT2019-90897
23.
Chi
,
Z.
,
Liu
,
H.
,
Zang
,
S.
,
Pan
,
C.
, and
Jiao
,
G.
,
2019
, “
Full-Annulus URANS Study on the Transportation of Combustion Inhomogeneity in a Four-Stage Cooled Turbine
,”
ASME J. Turbomach.
,
141
(
11
), p.
111003
.10.1115/1.4044661
24.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
25.
Jordan
,
E. H.
, and
Walker
,
K. P.
,
1992
, “
A Viscoplastic Model for Single Crystals
,”
ASME J. Eng. Mater. Technol.
,
114
(
1
), pp.
19
26
.10.1115/1.2904134
26.
Cruzado
,
A.
,
Llorca
,
J.
, and
Segurado
,
J.
,
2017
, “
Modeling Cyclic Deformation of Inconel 718 Superalloy by Means of Crystal Plasticity and Computational Homogenization
,”
Int. J. Solids Struct.
,
122–123
, pp.
148
161
.10.1016/j.ijsolstr.2017.06.014
27.
Vakili-Tahami
,
F.
, and
Adibeig
,
M. R.
,
2015
, “
Investigating the Possibility of Replacing in 738 LC Gas Turbine Blades With in 718
,”
J. Mech. Sci. Technol.
,
29
(
10
), pp.
4167
4178
.10.1007/s12206-015-0911-6
28.
Schulz
,
S.
,
Schueren
,
S.
, and
Wolfersdorf
,
J. V.
,
2013
, “
A Particle Image Velocimetry-Based Investigation of the Flow Field in an Oblique Jet Impingement Configuration
,”
ASME J. Turbomach.
,
136
(
5
), p.
051009
.10.1115/1.4025212
29.
Brakmann
,
R.
,
Chen
,
L.
,
Weigand
,
B.
, and
Crawford
,
M.
,
2016
, “
Experimental and Numerical Heat Transfer Investigation of an Impinging Jet Array on a Target Plate Roughened by Cubic Micro Pin Fins
,”
ASME J. Turbomach.
,
138
(
11
), p.
111010
.10.1115/1.4033670
30.
Ravanji
,
A.
, and
Rajabi Zargarabadi
,
M.
,
2021
, “
Effects of Pin-Fin Shape on Cooling Performance of a Circular Jet Impinging on a Flat Surface
,”
Int. J. Therm. Sci.
,
161
, p.
106684
.10.1016/j.ijthermalsci.2020.106684
31.
Chi
,
Z.
,
Kan
,
R.
,
Ren
,
J.
, and
Jiang
,
H.
,
2013
, “
Experimental and Numerical Study of the Anti-Crossflows Impingement Cooling Structure
,”
Int. J. Heat Mass Transfer
,
64
, pp.
567
580
.10.1016/j.ijheatmasstransfer.2013.04.052
32.
Chi
,
Z.
,
Li
,
X.
,
Han
,
C.
,
Ren
,
J.
, and
Jiang
,
H.
,
2014
, “
Optimization of the Hole Exit Shaping of Film Holes Without and With Compound Angles for Maximal Film Cooling Effectiveness
,”
ASME
Paper No. GT2014-25212. 10.1115/GT2014-25212
33.
Hylton
,
L.
,
Mihelc
,
M.
,
Turner
,
E.
,
Nealy
,
D.
, and
York
,
R.
,
1983
, “
Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surfaces of Turbine Vanes
,” NASA Technical Reports Server, Washington, DC, Report No.
NAS 1.26: 168015
.https://ntrs.nasa.gov/citations/19830020105
34.
Bird
,
B.
,
Steward
,
W.
, and
Lightfoot
,
E. J. N. Y.
,
2007
, “
Transport Phenomena
,” revised 2nd ed.,
Wiley
, Hoboken, NJ.
35.
Amidror
,
I.
,
2002
, “
Scattered Data Interpolation Methods for Electronic Imaging Systems: A Survey
,”
J. Electron. Imaging
,
11
(
2
), pp.
157
176
.10.1117/1.1455013
You do not currently have access to this content.