Abstract

This paper evaluates the effect of a microsecond pulsed plasma (MPP) on the stabilization and emission characteristics of non-premixed biogas/air flames with various CO2 contents. The MPP is generated by a unique DC-pulsed power generator providing high voltage (HV) pulses over a wide range of pulse repetition frequencies (PRFs). The burner configuration is made up of two concentric tubes in which a swirler is placed inside the annular part, ensuring the oxidizer's rotation. The central tube delivers the fuel through an injector placed close to the burner exit. Electrical diagnostics, including voltage, were performed. OH* chemiluminescence measurements were done to describe the structure and stability of the flame. Results showed that plasma generated by microsecond HV pulses can improve flame stability. In this regard, the distribution of key active species in the burner was studied via optical emission spectroscopy (OES). The results revealed that the pulsed plasma generates chemically active species such as excited N2*, CH*, OH* molecules, and H* and O* atoms, thereby improving flame stability. The dependence of the emitted species intensities on plasma parameters was investigated in detail. It is demonstrated that MPP can drastically enhance the dynamic flame stability of swirling non-premixed biogas flames, especially at lean operating conditions. In addition, NOx and CO emissions were studied over a wide range of pulse repetition frequencies. It is seen that the pulsed plasma increases NOx emission slightly and significantly reduces CO concentration in the flue gases.

References

1.
Académie des Technologies
,
2016
,
Rapport de l'Académie des Technologies
,
EDP Sciences
,
Les Ulis, France
.
2.
Condorchem Envitech
,
2019
, “
Traitement du Biogaz: Nettoyage, Séchage et Valorisation du Biogaz
,”
Condorchem Envitech
,
France
, accessed Oct. 19, 2022, https://condorchem.com/fr/blog/traitement-du-biogaz/
3.
Chavda
,
K.
, and
Kulkarni
,
K.
,
2021
, “
Plasma Assisted Combustion: A Review
,”
IOSR J. Appl. Phys.
,
13
(
4 Ser. II
), pp.
26
35
.10.9790/4861-1304022635
4.
Ju
,
Y.
, and
Sun
,
W.
,
2015
, “
Plasma Assisted Combustion: Dynamics and Chemistry
,”
Prog. Energy Combust. Sci.
,
48
, pp.
21
83
.10.1016/j.pecs.2014.12.002
5.
Minesi
,
N. Q.
,
Blanchard
,
V. P.
,
Pannier
,
E.
,
Stancu
,
G. D.
, and
Laux
,
C. O.
,
2022
, “
Plasma-Assisted Combustion With Nanosecond Discharges. I: Discharge Effects Characterization in the Burnt Gases of a Lean Flame
,”
Plasma Sources Sci. Technol.
,
31
(
4
), p.
045029
.10.1088/1361-6595/ac5cd4
6.
Li
,
S.-Z.
,
Niu
,
Y.-L.
,
Cao
,
S.-L.
,
Zhang
,
J.
,
Zhang
,
J.
, and
Li
,
X.
,
2022
, “
The Effect of Plasma Discharge on Methane Diffusion Combustion in Air Assisted by an Atmospheric Pressure Microwave Plasma Torch
,”
J. Phys. D
,
55
(
23
), p.
235203
.10.1088/1361-6463/ac50cb
7.
Stockman
,
E. S.
,
Zaidi
,
S. H.
,
Miles
,
R. B.
,
Carter
,
C. D.
, and
Ryan
,
M. D.
,
2009
, “
Measurements of Combustion Properties in a Microwave Enhanced Flame
,”
Combust. Flame
,
156
(
7
), pp.
1453
1461
.10.1016/j.combustflame.2009.02.006
8.
Zhang
,
H.
,
He
,
L.
,
Yu
,
J.
,
Qi
,
W.
, and
Chen
,
G.
,
2018
, “
Investigation of Flame Structure in Plasma-Assisted Turbulent Premixed Methane-Air Flame
,”
Plasma Sci. Technol.
,
20
(
2
), p.
024001
.10.1088/2058-6272/aa9850
9.
Sun
,
J.
,
Tang
,
Y.
, and
Li
,
S.
,
2021
, “
Plasma-Assisted Stabilization of Premixed Swirl Flames by Gliding Arc Discharges
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6733
6741
.10.1016/j.proci.2020.06.223
10.
Faeth, G. M.,
1986
, “Swirl Flows,”
Combustion and Flame
, 63(1–2), p. 311.10.1016/0010-2180(86)90133-1
11.
Boushaki
,
T.
,
Koched
,
A.
,
Mansouri
,
Z.
, and
Lespinasse
,
F.
,
2017
, “
Volumetric Velocity Measurements (V3V) on Turbulent Swirling Flows
,”
Flow, Meas. Instrum.
,
54
, pp.
46
55
.10.1016/j.flowmeasinst.2016.12.003
12.
Chen
,
Y.
,
Wang
,
J.
,
Zhang
,
X.
, and
Li
,
C.
,
2021
, “
The Effects of CO2 Additional on Flame Characteristics in the CH4/N2/O2 Counterflow Diffusion Flame
,”
Molecules
,
26
(
10
), p.
2905
.10.3390/molecules26102905
13.
Erete
,
J. I.
,
Hughes
,
K. J.
,
Ma
,
L.
,
Fairweather
,
M.
,
Pourkashanian
,
M.
, and
Williams
,
A.
,
2017
, “
Effect of CO2 Dilution on the Structure and Emissions From Turbulent, Non-Premixed Methane–Air Jet Flames
,”
J. Energy Inst.
,
90
(
2
), pp.
191
200
.10.1016/j.joei.2016.02.004
14.
Tao
,
C.
,
Liu
,
B.
,
Dou
,
Y.
,
Qian
,
Y.
,
Zhang
,
Y.
, and
Meng
,
S.
,
2021
, “
The Experimental Study of Flame Height and Lift-Off Height of Propane Diffusion Flames Diluted by Carbon Dioxide
,”
Fuel
,
290
, p.
119958
.10.1016/j.fuel.2020.119958
15.
Lee
,
M. C.
,
Seo
,
S. B.
,
Yoon
,
J.
,
Kim
,
M.
, and
Yoon
,
Y.
,
2012
, “
Experimental Study on the Effect of N2, CO2, and Steam Dilution on the Combustion Performance of H2 and CO Synthetic Gas in an Industrial Gas Turbine
,”
Fuel
,
102
, pp.
431
438
.10.1016/j.fuel.2012.05.028
16.
Ren
,
J.-Y.
,
Qin
,
W.
,
Egolfopoulos
,
F. N.
, and
Tsotsis
,
T. T.
,
2001
, “
Strain-Rate Effects on Hydrogen-Enhanced Lean Premixed Combustion
,”
Combust. Flame
,
124
(
4
), pp.
717
720
.10.1016/S0010-2180(00)00205-4
17.
Zaidaoui
,
H.
,
Boushaki
,
T.
,
Koched
,
A.
,
Sautet
,
J. C.
,
Sarh
,
B.
, and
Gökalp
,
I.
,
2021
, “
Experimental Study of EGR Dilution and O2 Enrichment Effects on Turbulent Non-Premixed Swirling Flames
,”
Combust. Sci. Technol.
,
193
(
2
), pp.
280
289
.10.1080/00102202.2020.1786375
18.
Sánchez–Sanz
,
M.
,
Fernández-Galisteo
,
D.
, and
Kurdyumov
,
V. N.
,
2014
, “
Effect of the Equivalence Ratio, Damköhler Number, Lewis Number and Heat Release on the Stability of Laminar Premixed Flames in Microchannels
,”
Combust. Flame
,
161
(
5
), pp.
1282
1293
.10.1016/j.combustflame.2013.11.015
19.
Farrag
,
A.
,
Kader
,
E.-M.
,
Mohammed
,
A. S.
, and
Gad
,
M.
,
2010
, “
Experimental Investigations on the Combustion of Gaseous Fuels
,”
J. Appl. Sci. Res.
,
6
, pp.
2105
2110
.https://www.researchgate.net/publication/265413225_Experimental_Investigations_on_the_combustion_of_Gaseous_Fuels
20.
Zhang
,
R.
,
Yang
,
S.
,
Zhou
,
X.
, and
Liu
,
D.
,
2022
, “
Study of Diffusion Cool Flames of Dimethyl Ether in a Counterflow Burner Under a Wide Range of Pressures
,”
ACS Omega
,
7
(
29
), pp.
25087
25093
.10.1021/acsomega.2c01362
21.
Rousso
,
A.
,
Mao
,
X.
,
Chen
,
Q.
, and
Ju
,
Y.
,
2019
, “
Kinetic Studies and Mechanism Development of Plasma Assisted Pentane Combustion
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5595
5603
.10.1016/j.proci.2018.05.100
22.
Steinberg
,
A. M.
,
Hamlington
,
P. E.
, and
Zhao
,
X.
,
2021
, “
Structure and Dynamics of Highly Turbulent Premixed Combustion
,”
Prog. Energy Combust. Sci.
,
85
, p.
100900
.10.1016/j.pecs.2020.100900
23.
Varella
,
R. A.
,
2016
, “
Effects of Plasma Assisted Combustion on Pollutant Emissions of a Premixed Flame of Natural Gas and Air
,”
Fuel
,
184
, pp.
269
276
.10.1016/j.fuel.2016.07.031
24.
Vignat
,
G.
,
Minesi
,
N.
,
Soundararajan
,
P. R.
,
Durox
,
D.
,
Renaud
,
A.
,
Blanchard
,
V.
,
Laux
,
C. O.
, and
Candel
,
S.
,
2021
, “
Improvement of Lean Blow Out Performance of Spray and Premixed Swirled Flames Using Nanosecond Repetitively Pulsed Discharges
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6559
6566
.10.1016/j.proci.2020.06.136
25.
Pinto
,
A. J.
,
Sbampato
,
M. E.
,
Sagás
,
J. C.
, and
Lacava
,
P. T.
,
2023
, “
Gliding Arc Discharge for Emission Control in Swirl Fuel-Lean Non-Premixed Combustion
,”
Combust. Sci. Technol.
,
195
(
6
), pp.
1235
1250
.10.1080/00102202.2021.1990896
26.
Meng
,
Y.
,
Gu
,
H.
, and
Chen
,
F.
,
2022
, “
Influence of Plasma on the Combustion Mode in a Scramjet
,”
Aerospace
,
9
(
2
), p.
73
.10.3390/aerospace9020073
27.
Starik
,
A. M.
,
Loukhovitski
,
B. I.
,
Sharipov
,
A. S.
, and
Titova
,
N. S.
,
2015
, “
Physics and Chemistry of the Influence of Excited Molecules on Combustion Enhancement
,”
Philos. Trans. R. Soc. A
,
373
(
2048
), p.
20140341
.10.1098/rsta.2014.0341
You do not currently have access to this content.