Abstract

Honeycomb bushing wear has a significant effect on the leakage characteristics of the labyrinth seal. In this paper, four kinds of honeycomb bushing labyrinth seals was designed and processed. The leakage characteristics of honeycomb bushing labyrinth seal were studied experimentally under different inlet and outlet pressure ratios and sealing clearance conditions. At the same time, the numerical model of honeycomb bushing labyrinth seals were established, and the influence of honeycomb bushing wear on the flow field characteristics of labyrinth seals was analyzed by numerical simulation. The existing leakage formula was modified by the correction coefficient method. The results show that with the increase in wear depth, the leakage of the honeycomb bushing labyrinth seal increases, and the maximum leakage can be increased by 59.59%. The wear groove weakens the throttling effect of the labyrinth, causing the leakage of the seal to increase. The increase of the depth of the wear groove changes the flow area and the direction of the jet so that the leakage increases slightly. The influence of the wear groove on the leakage characteristics of the honeycomb bushing labyrinth seal is gradually reduced under the condition of large clearance. The theoretical formula of leakage is corrected by the correction coefficient method. The value calculated by the corrected theoretical formula of leakage is in good agreement with the experiment, and the error is within 10%. It meets the practical application of the project.

References

1.
Steinetz
,
B. M.
,
Hendricks
,
R. C.
, and
Braun
,
M. J.
,
2004
, “
Turbomachine Sealing and Secondary Flows, Part 1—Review of Sealing Performance, Customer, Engine Designer, and Research Issues
,” National Aeronautics and Space Administration, Cleveland, OH, Report No.
NASA/TM—2004-211991/Part1
.https://ntrs.nasa.gov/api/citations/20040086704/downloads/20040086704.pdf
2.
Chupp
,
R. E.
,
Hendricks
,
R. C.
,
Lattime
,
S. B.
, and
Steinetz
,
B. M.
,
2006
, “
Sealing in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
313
349
.10.2514/1.17778
3.
Rosic
,
B.
, and
Denton
,
J. D.
,
2008
, “
Control of Shroud Leakage Loss by Reducing Circumferential Mixing
,”
ASME J. Turbomach.
,
130
(
2
), p.
021010
.10.1115/1.2750682
4.
Artur
,
S.
,
Włodzimierz
,
W.
,
Krzysztof
,
B.
, and
Krzysztof
,
M.
,
2020
, “
Experimental Validation of Optimised Straight-Through Labyrinth Seals With Various Land Structures
,”
Int. J. Heat Mass Transfer
,
158
, pp.
119930.1
119930.24
.10.1016/j.ijheatmasstransfer.2020.119930
5.
Čížek
,
M.
,
Pátek
,
Z.
, and
Vampola
,
T.
,
2020
, “
Aircraft Turbine Engine Labyrinth Seal CFD Sensitivity Analysis
,”
Appl. Sci.
,
10
(
19
), pp.
6830.1
6930.19
.10.3390/app10196830
6.
Ilieva
,
G.
, and
Pirovsky
,
C.
,
2019
, “
Labyrinth Seals With Application to Turbomachinery
,”
Materialwiss. Werkstofftech
,
50
(
5
), pp.
479
491
.10.1002/mawe.201900004
7.
Chun
,
Y. H.
, and
Ahn
,
J.
,
2022
, “
Optimizing the Geometric Parameters of a Stepped Labyrinth Seal to Minimize the Discharge Coefficient
,”
Processes
,
10
(
10
), pp.
2019.1
2019.13
.10.3390/pr10102019
8.
Daniel
,
F.
,
Krzysztof
,
B.
, and
Włodzimierz
,
W.
,
2016
, “
Influence of Honeycomb Rubbing on the Labyrinth Seal Performance
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
012502
.10.1115/1.4034183
9.
Jo
,
S. Y.
,
Hur
,
M. S.
,
Moon
,
S. W.
, and
Kim
,
T. S.
,
2022
, “
Numerical Study on the Leakage Characteristics of a Stepped Labyrinth Seal With Mixed Honeycomb Cell Diameters
,”
J. Mech. Sci. Technol.
,
37
(
1
), pp.
465
475
.10.1007/s12206-022-1244-x
10.
Nayak
,
K. C.
,
2020
, “
Effect of Rotation on Leakage and Windage Heating in Labyrinth Seals With Honeycomb Lands
,”
ASME J. Eng. Gas Turbines Power
,
142
(
8
), p.
081001
.10.1115/1.4047180
11.
Zhao
,
Y. Z.
, and
Wang
,
C. H.
,
2021
, “
Shape Optimization of Labyrinth Seals to Improve Sealing Performance
,”
Aerospace
,
8
(
4
), pp.
92
92
.10.3390/aerospace8040092
12.
Kim
,
T. S.
, and
Cha
,
K. S.
,
2009
, “
Comparative Analysis of the Influence of Labyrinth Seal Configuration on Leakage Behavior
,”
J. Mech. Sci. Technol.
,
23
(
10
), pp.
2830
2838
.10.1007/s12206-009-0733-5
13.
Zhang
,
B.
,
Yang
,
S.
,
Zhang
,
J.
,
Lin
,
Z. Q.
, and
Ji
,
H. H.
,
2023
, “
Experimental Investigation on Relationship Between Heat Transfer and Sealing Characteristics Under Different Pressure Ratios in Labyrinth Seals With Orthogonal Method
,”
Ain Shams Eng. J.
,
14
(
7
), pp.
101990.1
101990.8
.10.1016/j.asej.2022.101990
14.
Huo
,
C. J.
,
Sun
,
J. J.
,
Song
,
P.
, and
Sun
,
W. Y.
,
2023
, “
Influence of Tooth Geometrical Shape on the Leakage and Rotordynamic Characteristics of Labyrinth Seals in a Cryogenic Liquid Turbine Expander
,”
Int. J. Refrig.
,
145
, pp.
105
117
.10.1016/j.ijrefrig.2022.10.012
15.
Zhang
,
X.
,
Jiao
,
Y. H.
,
Qu
,
X. Q.
,
Zhao
,
Z. Q.
,
Huo
,
G. H.
, and
Huang
,
K.
,
2022
, “
Inlet Preswirl Dependence Research on Three Different Labyrinth Seals
,”
Tribol. Int.
,
176
, pp.
107929.1
107929.13
.10.1016/j.triboint.2022.107929
16.
Rathmann
,
U.
,
Olmes
,
S.
, and
Simeon
,
A.
,
2007
, “
Sealing Technology:Rub Test Rig for Abrasive/Abradable Systems
,”
ASME
Paper No. GT2007-27724. 10.1115/GT2007-27724
17.
Chougule
,
H. H.
, and
Mirzamoghadam
,
A.
,
2017
, “
CFD Leakage Predictions of Unworn and Worn Labyrinth Seals With and Without Tooth Axial Offset
,”
ASME
Paper No. GT2017-63163. 10.1115/GT2017-63163
18.
Dai
,
X. B.
,
Yan
,
X.
,
He
,
K.
,
Li
,
J.
, and
Feng
,
Z. P.
,
2021
, “
Numerical Investigations of Leakage Performance Degradations in Labyrinth and Flexible Seals Due to Wear
,”
ASME J. Eng. Gas Turbines Power
,
143
(
5
), p.
051003
.10.1115/1.4049008
19.
Yan
,
X.
,
Dai
,
X. B.
,
Zhang
,
K.
,
Li
,
J.
, and
He
,
K.
,
2018
, “
Effect of Teeth Bending and Mushrooming Damages on Leakage Performance of a Labyrinth Seal
,”
J. Mech. Sci. Technol.
,
32
(
10
), pp.
4697
4709
.10.1007/s12206-018-0917-y
20.
Fischer
,
T.
,
Welzenbach
,
S.
,
Meier
,
F.
,
Werner
,
E.
,
Kyzy
,
S. U.
, and
Munz
,
O.
,
2018
, “
Modeling the Rubbing Contact in Honeycomb Seals
,”
Continuum Mech. Thermodyn.
,
30
(
2
), pp.
381
395
.10.1007/s00161-017-0608-4
21.
Wang
,
Z. G.
,
Zhang
,
B.
,
Chen
,
Y. X.
,
Yang
,
S.
,
Liu
,
H. M.
, and
Ji
,
H. H.
,
2022
, “
Investigation of Leakage and Heat Transfer Properties of the Labyrinth Seal on Various Rotation Speed and Geometric Parameters
,”
Coatings
,
12
(
5
), pp.
586
586
.10.3390/coatings12050586
22.
Whalen
,
J. K.
,
Alvarez
,
E.
, and
Palliser
,
L. P.
,
2004
, “
Thermoplastic Labyrinth Seals for Centrifugal Compressors
,”
Proceedings of the 33rd Turbomachinery Symposium, Turbomachinery Laboratories, Mechanical Engineering Department
, Texas A&M University, College Station, TX, Sept. 20–23, pp.
113
126
.https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/163245/t33-14.pdf
23.
Liang
,
Y.
, and
Sun
,
J. J.
,
2021
, “
Design Defect and on-Wing Solutions of LEAP-1A Engine Fuel Nozzle
,”
Aviation Maint. Eng.
,
11
, pp.
69
73
.
24.
Oettinger
,
M.
,
Tim
,
K.
, and
Joerg
,
S.
,
2022
, “
Influence of Honeycomb Structures on Labyrinth Seal Aerodynamics
,”
J. Global Power Propul. Soc.
,
6
, pp.
290
303
.10.33737/jgpps/152697
25.
Aero Engine Design Manual” Editorial Committee
,
2002
,
Aero Engine Design Manual. Book 12, Transmission and Lubrication System [M]
,
Aviation Industry Press
,
Beijing, China
, pp.
305
306
.
26.
Martin
,
S.
,
2002
, “
Exploring the Grants Labyrinth
,”
Estates Gazette
,
246
(
1
), p.
131
.
27.
Egli
,
A.
,
1937
, “
The Leakage of Gas Through Narrow Channels
,”
ASME J. Appl. Mech.
,
4
(
2
), pp.
63
68
.10.1115/1.4008769
28.
Zhao
,
H.
,
Li
,
Y. L.
,
Sun
,
D.
,
Li
,
Y.
,
Wen
,
S. F.
, and
Sun
,
J. S.
,
2023
, “
Inter-Stage Pressure Drop of Multi-Stage Brush Seal With Differentiated Structure
,”
ASME J. Eng. Gas Turbines Power
,
145
(
7
), p.
071001
.10.1115/1.4056793
You do not currently have access to this content.