Abstract

The prediction of gas turbine (GT) future health state plays a strategic role in the current energy sector. However, training an accurate prognostic model is challenging in case of limited historical data (e.g., new installation). Thus, this paper develops a generative adversarial network (GAN) model aimed to generate synthetic data that can be used for data augmentation. The GAN model includes two neural networks, i.e., a generator and a discriminator. The generator aims to generate synthetic data that mimic the real data. The discriminator is a binary classification network. During the training process, the generator is optimized to fool the discriminator in distinguishing between real and synthetic data. The real data employed in this paper were taken from the literature, gathered from three GTs, and refer to two quantities, i.e., corrected power output and compressor efficiency, which are tracked during several years. Three different analyses are presented to validate the reliability of the synthetic dataset. First, a visual comparison of real and synthetic data is performed. Then, two metrics are employed to quantitively evaluate the similarity between real and synthetic data distributions. Finally, a prognostic model is trained by only using synthetic data and then employed to predict real data. The results prove the high reliability of the synthetic data, which can be thus exploited to train a prognostic model. In fact, the prediction error of the prognostic model on the real data is lower than 2.5% even in the case of long-term prediction.

References

1.
Wen
,
Y.
,
Fashiar Rahman
,
M.
,
Xu
,
H.
, and
Tseng
,
T.-L. B.
,
2022
, “
Recent Advances and Trends of Predictive Maintenance From Data-Driven Machine Prognostics Perspective
,”
Measurement
,
187
, p.
110276
.10.1016/j.measurement.2021.110276
2.
Nguyen
,
K. T. P.
,
Medjaher
,
K.
, and
Tran
,
D. T.
,
2023
, “
A Review of Artificial Intelligence Methods for Engineering Prognostics and Health Management With Implementation Guidelines
,”
Artif. Intell. Rev.
,
56
(
4
), pp.
3659
3709
.10.1007/s10462-022-10260-y
3.
Ochella
,
S.
,
Shafiee
,
M.
, and
Dinmohammadi
,
F.
,
2022
, “
Artificial Intelligence in Prognostics and Health Management of Engineering Systems
,”
Eng. Appl. Artif. Intell.
,
108
, p.
104552
.10.1016/j.engappai.2021.104552
4.
Vogl
,
G. W.
,
Weiss
,
B. A.
, and
Helu
,
M.
,
2019
, “
A Review of Diagnostic and Prognostic Capabilities and Best Practices for Manufacturing
,”
J. Intell. Manuf.
,
30
(
1
), pp.
79
95
.10.1007/s10845-016-1228-8
5.
Losi
,
E.
,
Venturini
,
M.
,
Manservigi
,
L.
, and
Bechini
,
G.
,
2023
, “
Ensemble Learning Approach to the Prediction of Gas Turbine Trip
,”
ASME J. Eng. Gas Turbines Power
,
145
(
2
), p.
021009
.10.1115/1.4055905
6.
Losi
,
E.
,
Venturini
,
M.
,
Manservigi
,
L.
, and
Bechini
,
G.
, March
2023
, “
Detection of the Onset of Trip Symptoms Embedded in Gas Turbine Operating Data
,”
ASME J. Eng. Gas Turbines Power
,
145
(
3
), p.
031023
.10.1115/1.4055904
7.
Losi
,
E.
,
Venturini
,
M.
,
Manservigi
,
L.
, and
Bechini
,
G.
,
2023
, “
Prediction of Gas Turbine Trip by Combining Gas Path Measurements and Vibration Signals
,”
ASME
Paper No. GT2023-101703.10.1115/GT2023-101703
8.
Losi
,
E.
,
Venturini
,
M.
,
Manservigi
,
L.
, and
Bechini
,
G.
, May
2024
, “
Methodology to Monitor Early Warnings Before Gas Turbine Trip
,”
ASME J. Eng. Gas Turbines Power.
,
146
(
5
), p.
051005
.10.1115/1.4063720
9.
Mancuso
,
A.
,
Compare
,
M.
,
Salo
,
A.
, and
Zio
,
E.
,
2021
, “
Optimal Prognostics and Health Management-Driven Inspection and Maintenance Strategies for Industrial Systems
,”
Reliab. Eng. Syst. Saf.
,
210
, p.
107536
.10.1016/j.ress.2021.107536
10.
Rodrigues
,
L. R.
,
Yoneyama
,
T.
, and
Nascimento
,
C. L.
,
2012
, “
How Aircraft Operators Can Benefit From PHM Techniques
,”
IEEE Aerospace Conference
,
Big Sky, MT,
Mar. 3–10, pp.
1
8
.10.1109/AERO.2012.6187376
11.
Tang
,
L.
, and
Volponi
,
A. J.
,
2019
, “
Intelligent Reasoning for Gas Turbine Fault Isolation and Ambiguity Resolution
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p.
041023
.10.1115/1.4040899
12.
Bai
,
M.
,
Yang
,
X.
,
Liu
,
J.
,
Liu
,
J.
, and
Yu
,
D.
,
2021
, “
Convolutional Neural Network-Based Deep Transfer Learning for Fault Detection of Gas Turbine Combustion Chambers
,”
Appl. Energy
,
302
(
2021
), p.
117509
.10.1016/j.apenergy.2021.117509
13.
Liu
,
S.
,
Wang
,
H.
,
Tang
,
J.
, and
Zhang
,
X.
,
2022
, “
Research on Fault Diagnosis of Gas Turbine Rotor Based on Adversarial Discriminative Domain Adaption Transfer Learning
,”
Measurement
,
196
, p.
111174
.10.1016/j.measurement.2022.111174
14.
Liu
,
D.
,
Zhong
,
S.
,
Lin
,
L.
,
Zhao
,
M.
,
Fu
,
X.
, and
Liu
,
X.
,
2022
, “
Highly Imbalanced Fault Diagnosis of Gas Turbines Via Clustering-Based Downsampling and Deep Siamese Self-Attention Network
,”
Adv. Eng. Inf.
,
54
, p.
101725
.10.1016/j.aei.2022.101725
15.
Liu
,
D.
,
Zhong
,
D.
,
Lin
,
L.
,
Zhao
,
M.
,
Fu
,
X.
, and
Liu
,
X.
,
2023
, “
Deep Attention SMOTE: Data Augmentation With a Learnable Interpolation Factor for Imbalanced Anomaly Detection of Gas Turbines
,”
Comput. Ind.
,
151
, p.
103972
.10.1016/j.compind.2023.103972
16.
Carreon
,
A.
,
Barwey
,
S.
, and
Raman
,
V.
,
2023
, “
A Generative Adversarial Network (GAN) Approach to Creating Synthetic Flame Images From Experimental Data
,”
Energy AI
,
13
, p.
100238
. 10.1016/j.egyai.2023.100238
17.
Liu
,
S.
,
Wang
,
H.
, and
Zhang
,
X.
,
2022
, “
Research on Improved Deep Convolutional Generative Adversarial Networks for Insufficient Samples of Gas Turbine Rotor System Fault Diagnosis
,”
Appl. Sci.
,
12
(
7
), p.
3606
.10.3390/app12073606
18.
Goodfellow
,
I. J.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A. C.
, and
Bengio
,
Y.
,
2014
, “
Generative Adversarial Nets
,”
Adv. Neural Inf. Process. Syst.
,
27
, pp.
1
9
.https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
19.
Gui
,
J.
,
Sun
,
Z.
,
Wen
,
Y.
,
Tao
,
D.
, and
Ye
,
J.
,
2023
, “
A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications
,”
IEEE Trans. Knowl. Data Eng.
,
35
(
4
), pp.
3313
3332
.10.1109/TKDE.2021.3130191
20.
Brophy
,
E.
,
Wang
,
Z.
,
She
,
Q.
, and
Ward
,
T.
,
2023
, “
Generative Adversarial Networks in Time Series: A Systematic Literature Review
,”
ACM Comput. Surv.
,
55
(
10
), pp.
1
31
.10.1145/3559540
21.
Choi
,
Y.
,
Lim
,
H.
,
Choi
,
H.
, and
Kim
,
I.-J.
,
2020
, “
GAN-Based Anomaly Detection and Localization of Multivariate Time Series Data for Power Plant
,”
IEEE International Conference on Big Data and Smart Computing (BigComp)
,
Busan, South Korea
, Feb. 19–22, pp.
71
74.
10.1109/BigComp48618.2020.00-97
22.
Lian
,
Y.
,
Geng
,
Y.
, and
Tian
,
T.
,
2023
, “
Anomaly Detection Method for Multivariate Time Series Data of Oil and Gas Stations Based on Digital Twin and MTAD-GAN
,”
Appl. Sci.
,
13
(
3
), p.
1891
.10.3390/app13031891
23.
Qian
,
G.
, and
Liu
,
J.
,
2022
, “
Fault Diagnosis Based on Conditional Generative Adversarial Networks in Nuclear Power Plants
,”
Ann. Nucl. Energy
,
176
, p.
109267
.10.1016/j.anucene.2022.109267
24.
Wang
,
Z.
,
Xia
,
H.
,
Yin
,
W.
, and
Yang
,
B.
,
2023
, “
An Improved Generative Adversarial Network for Fault Diagnosis of Rotating Machine in Nuclear Power Plant
,”
Ann. Nucl. Energy
,
180
, p.
109434
.10.1016/j.anucene.2022.109434
25.
Su
,
Y.
,
Meng
,
L.
,
Kong
,
X.
,
Xu
,
T.
,
Lan
,
X.
, and
Li
,
Y.
,
2022
, “
Small Sample Fault Diagnosis Method for Wind Turbine Gearbox Based on Optimized Generative Adversarial Networks
,”
Eng. Failure Anal.
,
140
, p.
106573
.10.1016/j.engfailanal.2022.106573
26.
Li
,
M.
,
Zou
,
D.
,
Luo
,
S.
,
Zhou
,
Q.
,
Cao
,
L.
, and
Liu
,
H.
,
2022
, “
A New Generative Adversarial Network Based Imbalanced Fault Diagnosis Method
,”
Measurement
,
194
, p.
111045
.10.1016/j.measurement.2022.111045
27.
Liu
,
S.
,
Jiang
,
H.
,
Wu
,
Z.
, and
Li
,
X.
,
2022
, “
Data Synthesis Using Deep Feature Enhanced Generative Adversarial Networks for Rolling Bearing Imbalanced Fault Diagnosis
,”
Mech. Syst. Signal Process.
,
163
, p.
108139
.10.1016/j.ymssp.2021.108139
28.
Ren
,
Z.
,
Gao
,
D.
,
Zhu
,
Y.
,
Ni
,
Q.
,
Yan
,
K.
, and
Hong
,
J.
,
2023
, “
Generative Adversarial Networks Driven by Multi-Domain Information for Improving the Quality of Generated Samples in Fault Diagnosis
,”
Eng. Appl. Artif. Intell.
,
124
, p.
106542
.10.1016/j.engappai.2023.106542
29.
Dai
,
Z.
,
Zhao
,
L.
,
Wang
,
K.
, and
Zhou
,
Y.
,
2023
, “
Generative Adversarial Network to Alleviate Information Insufficiency in Intelligent Fault Diagnosis by Generating Continuations of Signals
,”
Appl. Soft Comput.
,
147
, p.
110784
.10.1016/j.asoc.2023.110784
30.
Zhang
,
L.
,
Wang
,
B.
,
Liang
,
P.
,
Yuan
,
X.
, and
Li
,
N.
,
2023
, “
Semi-Supervised Fault Diagnosis of Gearbox Based on Feature Pre-Extraction Mechanism and Improved Generative Adversarial Networks Under Limited Labeled Samples and Noise Environment
,”
Adv. Eng. Inf.
,
58
, p.
102211
.10.1016/j.aei.2023.102211
31.
Sun
,
J.
,
Yan
,
Z.
,
Han
,
Y.
,
Zhu
,
X.
, and
Yang
,
C.
,
2023
, “
Deep Learning Framework for Gas Turbine Performance Digital Twin and Degradation Prognostics From Airline Operator Perspective
,”
Reliab. Eng. Syst. Safety
,
238
, p.
109404
.10.1016/j.ress.2023.109404
32.
Shah
,
B. S. R.
,
Chadha
,
G. S.
,
Schwung
,
A.
, and
Ding
,
S. X.
,
2021
, “
A Sequence-to-Sequence Approach for Remaining Useful Lifetime Estimation Using Attention-Augmented Bidirectional LSTM
,”
Intell. Syst. Appl.
,
10-11
, p.
200049
.10.1016/j.iswa.2021.200049
33.
Zhao
,
Y.
, and
Wang
,
Y.
,
2021
, “
Remaining Useful Life Prediction for Multi-Sensor Systems Using a Novel End-to-End Deep-Learning Method
,”
Measurement
,
182
, p.
109685
.10.1016/j.measurement.2021.109685
34.
Ragab
,
M.
,
Chen
,
Z.
,
Wu
,
M.
,
Kwoh
,
C.-K.
,
Yan
,
R.
, and
Li
,
X.
,
2021
, “
Attention-Based Sequence to Sequence Model for Machine Remaining Useful Life Prediction
,”
Neurocomputing
,
466
, pp.
58
68
.10.1016/j.neucom.2021.09.022
35.
Radford
,
A.
,
Metz
,
L.
, and
Chintala
,
S.
,
2016
, “
Unsupervised Representation Learning With Deep Convolutional Generative Adversarial Networks
,”
Proceedings of ICLR 2016
, San Juan, Puerto Rico, May 2–4.https://www.semanticscholar.org/paper/Unsupervised-Representation-Learning-with-Deep-Radford-Metz/8388f1be26329fa45e5807e968a641ce170ea078
36.
Srivastava
,
N.
,
Hinton
,
G.
,
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Salakhutdinov
,
R.
,
2014
, “
Dropout: A Simple Way to Prevent Neural Networks From Overfitting
,”
J. Mach. Learn. Res.
,
15
, pp.
1929
1958
.https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
37.
Diederik
,
K.
, and
Ba
,
J.
,
2015
, “
Adam: A Method for Stochastic Optimization
,” 3rd International Conference for Learning Representations, San Diego, CA, May 7–9, pp. 1–15,
arXiv:1412.6980
.https://arxiv.org/pdf/1412.6980
38.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
.10.1162/neco.1997.9.8.1735
39.
Luong
,
T.
,
Pham
,
H.
, and
Manning
,
C. D.
,
2015
, “
Effective Approaches to Attention-Based Neural Machine Translation
,”
Proceedings of the Conference on Empirical Methods in Natural Language Processing
,
Association for Computational Linguistics, Lisbon, Portugal
, pp.
1412
1421
.https://aclanthology.org/D15-1166/
40.
Venturini
,
M.
, and
Therkorn
,
D.
,
2013
, “
Application of a Statistical Methodology for Gas Turbine Degradation Prognostics to Alstom Field Data
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
091603
.10.1115/1.4024952
41.
Losi
,
E.
,
Venturini
,
M.
, and
Manservigi
,
L.
,
2019
, “
Gas Turbine Health State prognostics by Means of Bayesian Hierarchical Models
,”
ASME J. Eng. Gas Turbines Power.
,
141
(
11
), p.
111018
.10.1115/1.4044689
42.
Losi
,
E.
,
Venturini
,
M.
, and
Manservigi
,
L.
,
2019
, “
Prediction of compressor efficiency by Means of Bayesian Hierarchical Models
,”
AIP Conf. Proc.
,
2191
(
1
), p.
020101
.10.1063/1.5138834
43.
Losi
,
E.
,
Venturini
,
M.
, and
Manservigi
,
L.
,
2020
, “
Autoregressive Bayesian Hierarchical Model to Predict Gas Turbine Degradation
,”
ASME
Paper No. GT2020-16330.10.1115/GT2020-16330
44.
Li
,
X.
,
Metsis
,
V.
,
Wang
,
H.
, and
Ngu
,
A. H. H.
,
2022
, “
TTS-GAN: A Transformer-Based Time-Series Generative Adversarial Network
,”
Artificial Intelligence in Medicine
, Lecture Notes in Computer Science, Vol.
13263
,
Springer
,
Cham
.
45.
Yoon
,
J.
,
Daniel
,
J.
, and
van der Schaar
,
M.
,
2019
, “
Time-Series Generative Adversarial Networks
,”
Adv. Neural Inf. Process. Syst.
,
32
, pp.
1
11
.https://proceedings.neurips.cc/paper_files/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf
You do not currently have access to this content.