Abstract

A harmonic balance method for underconstrained dry friction systems containing rigid body modes (HBM-RBM) is proposed. This method aims to overcome the encountered obstacle when applying the harmonic balance method to turbine blades damped by underplatform dampers (UPDs). The inspiration for HBM-RBM comes from the free interface modal synthesis method. The key innovation involves deriving the elastic inversion of the singular stiffness matrix through the elimination of rigid body modes. In this way, the general HBM framework can be adopted, and the frequency response of underconstrained dry friction systems can be solved in a static/dynamic coupled manner. The accuracy and efficiency are both verified on a lumped parameter model and a finite element model of turbines with UPDs from a real gas turbine. A comparative study between the HBM-RBM and the commonly adopted way of imposing artificial grounding springs (HBM-AGS) is conducted. Results demonstrate that the HBM-RBM holds a significant advantage over HBM-AGS, as it eliminates the need for artificial grounding springs (AGS) and avoids the necessity for numerous trial cases to determine AGS stiffness.

References

1.
Griffin
,
J. H.
,
1990
, “
A Review of Friction Damping of Turbine Blade Vibration
,”
Int. J. Turbo Jet-Engines Vol.
,
7
(
3–4
), pp.
297
308
.10.1515/TJJ.1990.7.3-4.297
2.
Cameron
,
T. M.
, and
Griffin
,
J. H.
,
1989
, “
An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
149
154
.10.1115/1.3176036
3.
Petrov
,
E.
,
2017
, “
Stability Analysis of Multi-Harmonic Nonlinear Vibrations for Large Models of Gas-Turbine Engine Structures With Friction and Gaps
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022508
.10.1115/1.4034353
4.
Yu
,
P.
,
Li
,
H.
,
Ke
,
J.
,
Jiang
,
Z.
, and
Tao
,
X.
,
2024
, “
Dynamic Modeling and Nonlinear Analysis for Lateral–Torsional Coupling Vibration in an Unbalanced Rotor System
,”
Appl. Math. Modell.
,
126
, pp.
439
456
.10.1016/j.apm.2023.11.005
5.
Ma
,
H.
,
Li
,
L.
,
Wu
,
Y.
,
Fan
,
Y.
, and
Gao
,
Q.
,
2020
, “
Design of Dry Friction Dampers for Thin-Walled Structures by an Accelerated Dynamic Lagrange Method
,”
J. Sound Vib.
,
489
, p.
115550
.10.1016/j.jsv.2020.115550
6.
Sun
,
H.
,
Zhang
,
D.
,
Wu
,
Y.
,
Shen
,
Q.
, and
Hu
,
D.
,
2024
, “
A Semi-Analytical Multi-Harmonic Balance Method on Full-3D Contact Model for Dynamic Analysis of Dry Friction Systems
,”
Chin. J. Aeronaut.
,
37
(
2
), pp.
309
329
.10.1016/j.cja.2023.11.026
7.
Wu
,
Y.
,
Chen
,
J.
,
Fan
,
Y.
,
Li
,
L.
, and
Jiang
,
Z.
,
2024
, “
An MFC-Based Friction Damper With Adjustable Normal Force: Conception, Modelling, and Experiment
,”
Mech. Syst. Signal Process.
,
215
, p.
111450
.10.1016/j.ymssp.2024.111450
8.
Yang
,
G.
,
Zhou
,
B.
,
Zang
,
C.
, and
Chen
,
J.
,
2019
, “
Analysis of Effect Factors on Damping Characteristics for Underplatform Dampers
,”
J. Aerosp. Power
,
34
(
1
), pp.
115
124
.10.13224/j.cnki.jasp.2019.01.014
9.
Borrajo
,
J.
,
Zucca
,
S.
, and
Gola
,
M.
,
2006
, “
Analytical Formulation of the Jacobian Matrix for Non-Linear Calculation of the Forced Response of Turbine Blade Assemblies With Wedge Friction Dampers
,”
Int. J. Non-Linear Mech.
,
41
(
10
), pp.
1118
1127
.10.1016/j.ijnonlinmec.2006.11.003
10.
Craig
,
J.
,
Bampton
,
R.
, and
Mervyn
,
C.
,
1968
, “
Coupling of Substructures for Dynamics Analyses
,”
Am. Inst. Aeronaut. Astronaut.
,
6
(
7
), p.
1313
.10.2514/3.4741
11.
Craig
,
J.
,
1987
, “
A Review of Time-Domain and Frequency-Domain Component Mode Synthesis Method
,”
Int. J. Anal. Exp. Modal Anal.
,
2
(
2
), pp.
59
72
.
12.
Qiu
,
J.
,
Ying
,
Z.
, and
Yam
,
L.
,
1997
, “
New Modal Synthesis Technique Using Mixed Modes
,”
Am. Inst. Aeronaut. Astronaut.
,
35
(
12
), pp.
1869
1875
.10.2514/2.46
13.
Siewert
,
C.
,
Panning
,
L.
,
Wallaschek
,
J.
, and
Richter
,
C.
,
2010
, “
Multiharmonic Forced Response Analysis of a Turbine Blading Coupled by Nonlinear Contact Forces
,”
ASME J. Eng. Gas Turbines Power
,
132
(
8
), p.
082501
.10.1115/1.4000266
14.
Petrov
,
E.
, and
Ewins
,
D.
,
2007
, “
Advanced Modeling of Underplatform Friction Dampers for Analysis of Bladed Disk Vibration
,”
ASME J. Turbomach.
,
129
(
1
), pp.
143
150
.10.1115/1.2372775
15.
Gao
,
Q.
,
Fan
,
Y.
,
Wu
,
Y.
,
Li
,
L.
, and
Zhang
,
D.
,
2024
, “
Insight Into the Influence of Frictional Heat on the Modal Characteristics and Interface Temperature of Frictionally Damped Turbine Blades
,”
J. Sound Vib.
,
581
, p.
118410
.10.1016/j.jsv.2024.118410
You do not currently have access to this content.