Abstract

This paper considers the challenge of calculating accurate ball bearing stiffness, which is attributed to the uncertainty in the rolling element positions; and it solves that issue based on the simultaneous consideration of these positions and the physical effects of the rotating components. The novelty of the paper consists of the suggested methodology to resolve the uncertainty of the rolling element circumferential position when calculating bearing stiffness. The problem is solved through various formulations of dry and lubricated contact and validated based on the consideration of the finite-element (FE) model. The algorithms presented in the paper allow for the calculation of the resulting stiffness based on the stiffness values evaluated through different ball bearing positions. The approach presented in the paper is validated based on the experimental data. For this purpose, the model of the rotor in ball bearings is built, along with further calculation of the rotor dynamics. The comparison of the critical speeds calculated for the rotor in bearings, which have stiffness evaluated by the proposed approach with the measurements for the real machine, indicates a high accuracy of the suggested method in comparison with the methods that consider the single position of the rolling element when estimating their stiffness. In the paper, further recommendations for the use of the presented method are given, which will be useful for engineers in the field of turbomachinery dynamics.

References

1.
Kochurov
,
R.
,
Moroz
,
L.
, and
Martynenko
,
V.
,
2023
, “
Nonlinear Response of the Rotor Supported by Gas Journal Bearings Considering Stationary and Rotating Herringbone Grooves
,”
ASME
Paper No. GT2023-102296.10.1115/GT2023-102296
2.
Martynenko
,
G.
, and
Martynenko
,
V.
,
2021
, “
Computer Modeling and Simulation Analysis of Linear and Nonlinear Phenomena of Rotor Dynamics in Systems With Magnetic Bearings
,”
2021 IEEE 2nd KhPI Week on Advanced Technology (KhPIWeek)
, Kharkiv, Ukraine, Sept. 13–17, pp.
213
217
.10.1109/KhPIWeek53812.2021.9570097
3.
Martynenko
,
G.
, and
Martynenko
,
V.
,
2021
, “
Identification of Computational Models of the Dynamics of Gas Turbine Unit Rotors With Magnetic Bearings by Incomplete Data for Design Automation
,”
Lect. Notes Networks Syst.
, 188, pp.
451
463
.10.1007/978-3-030-66717-7
4.
Merculov
,
V.
,
Kostin
,
M.
,
Martynenko
,
G.
,
Smetankina
,
N.
, and
Martynenko
,
V.
,
2022
, “
Force Simulation of Bird Strike Issues of Aircraft Turbojet Engine Fan Blades
,”
Lect. Notes Networks Syst.
, 305, pp.
129
141
.10.1007/978-3-030-83368-8
5.
Merculov
,
V.
,
Kostin
,
M.
,
Martynenko
,
G.
,
Smetankina
,
N.
, and
Martynenko
,
V.
,
2022
, “
Improving the Accuracy of the Behaviour Simulation of the Material of the Turbojet Aircraft Engine Fan Rotor Blades in the Event of a Bird Strike by Using Adapted Finite Element Computational Models
,”
Mater. Today Proc.
,
59
, pp.
1797
1803
.10.1016/j.matpr.2022.04.381
6.
Merculov
,
V.
,
Kostin
,
M.
,
Martynenko
,
G.
,
Smetankina
,
N.
, and
Martynenko
,
V.
,
2022
, “
Peculiarities of the Modelling of the Bird Dynamic Impact on Fan Blades of an Aircraft Turbojet Engine at Operating Modes
,”
Lect. Notes Networks Syst.
, 367, pp.
462
473
.10.1007/978-3-030-94259-5
7.
Martynenko
,
V.
,
2020
, “
Analysis of Strength and Bearing Capacity of the Auxiliary Mine Ventilation Fan Connected to the Rotor of Its Electrical Drive
,”
2020 IEEE KhPI Week on Advanced Technology (KhPIWeek)
, Kharkiv, Ukraine, Oct. 5–10, pp.
19
23
.10.1109/KhPIWeek51551.2020.9250078
8.
Gupta
,
P. K.
,
1979
, “
Dynamics of Rolling-Element Bearings Part III: Ball Bearing Analysis
,”
ASME J. Lubr. Technol.
,
101
(
3
), pp.
312
318
.10.1115/1.3453363
9.
Gupta
,
P. K.
,
1979
, “
Dynamics of Rolling-Element Bearings Part IV: Ball Bearing Results
,”
ASME J. Lubr. Technol.
,
101
(
3
), pp.
319
326
.10.1115/1.3453364
10.
Houpert
,
L.
,
1997
, “
A Uniform Analytical Approach for Ball and Roller Bearings Calculations
,”
ASME J. Tribol.
,
119
(
4
), pp.
851
858
.10.1115/1.2833896
11.
Cao
,
H.
,
Niu
,
L.
,
Xi
,
S.
, and
Chen
,
X.
,
2018
, “
Mechanical Model Development of Rolling Bearing-Rotor Systems: A Review
,”
Mech. Syst. Signal Process.
,
102
, pp.
37
58
.10.1016/j.ymssp.2017.09.023
12.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2006
,
Rolling Bearing Analysis - 2 Volume Set
,
CRC Press
, Boca Raton, FL.
13.
Houpert
,
L.
,
2014
, “
An Enhanced Study of the Load-Displacement Relationships for Rolling Element Bearings
,”
ASME J. Tribol.
,
136
(
1
), p.
011105
.10.1115/1.4025602
14.
Houpert
,
L.
,
2015
, “
Load-Displacement Relationships for Ball and Spherical Roller Bearings
,”
ASME J. Tribol.
,
137
(
2
), p.
021102
.10.1115/1.4029042
15.
Wensing
,
J. A.
,
1998
,
On the Dynamics of Ball Bearings
,
University of Twente
, Enschede, The Netherlands.
16.
Wijnant
,
Y. H.
,
1998
,
Contact Dynamics in the Field of Elastohydrodynamic Lubrication
,
University of Twente
, Enschede, The Netherlands.
17.
Greenwood
,
J. A.
,
2020
, “
Elastohydrodynamic Lubrication
,”
Lubricants
,
8
(
5
), p.
51
.10.3390/lubricants8050051
18.
Guo
,
Y.
, and
Parker
,
R. G.
,
2012
, “
Stiffness Matrix Calculation of Rolling Element Bearings Using a Finite Element/Contact Mechanics Model
,”
Mech. Mach. Theory
,
51
, pp.
32
45
.10.1016/j.mechmachtheory.2011.12.006
19.
Zhao
,
H.
,
Wu
,
W.
,
Li
,
X.
, and
Li
,
H.
,
2013
, “
Stiffness Analysis of Angular Contact Ball Bearing Under Non-Uniform Preload
,”
Proceedings - 2013 IEEE International Symposium on Assembly and Manufacturing
,
ISAM 2013
, Xi'an, China, July 30–Aug. 2, pp.
97
101
.10.1109/ISAM.2013.6643498
20.
Singh
,
S.
,
Köpke
,
U. G.
,
Howard
,
C. Q.
, and
Petersen
,
D.
,
2014
, “
Analyses of Contact Forces and Vibration Response for a Defective Rolling Element Bearing Using an Explicit Dynamics Finite Element Model
,”
J. Sound Vib.
,
333
(
21
), pp.
5356
5377
.10.1016/j.jsv.2014.05.011
21.
Luo
,
H.
,
Fu
,
J.
,
Yu
,
C.
,
Liu
,
G.
,
Wang
,
W.
, and
Wang
,
P.
,
2018
, “
Numerical Simulation and Experimental Testing of Dynamic Stiffness of Angular Contact Ball Bearing
,”
Adv. Mech. Eng.
,
10
(
9
), p.
168781401879897
.10.1177/1687814018798973
22.
Bizarre
,
L.
,
Nonato
,
F.
, and
Cavalca
,
K. L.
,
2018
, “
Formulation of Five Degrees of Freedom Ball Bearing Model Accounting for the Nonlinear Stiffness and Damping of Elastohydrodynamic Point Contacts
,”
Mech. Mach. Theory
,
124
, pp.
179
196
.10.1016/j.mechmachtheory.2018.03.001
23.
Yan
,
P.
,
Yan
,
C.
,
Wang
,
K.
,
Wang
,
F.
, and
Wu
,
L.
,
2020
, “
5-DOF Dynamic Modeling of Rolling Bearing With Local Defect Considering Comprehensive Stiffness Under Isothermal Elastohydrodynamic Lubrication
,”
Shock Vib.
,
2020
, pp.
1
15
.10.1155/2020/9310278
24.
Tsuha
,
N. A. H.
, and
Cavalca
,
K. L.
,
2020
, “
Stiffness and Damping of Elastohydrodynamic Line Contact Applied to Cylindrical Roller Bearing Dynamic Model
,”
J. Sound Vib.
,
481
, p.
115444
.10.1016/j.jsv.2020.115444
25.
Fang
,
C.
,
Zhu
,
A.
,
Zhou
,
W.
,
Peng
,
Y.
, and
Meng
,
X.
,
2022
, “
On the Stiffness and Damping Characteristics of Line Contacts Under Transient Elastohydrodynamic Lubrication
,”
Lubricants
,
10
(
4
), p.
73
.10.3390/lubricants10040073
26.
Meng
,
F.
,
Zheng
,
Y.
,
Liu
,
Y.
,
Gong
,
J.
, and
Wang
,
B.
,
2020
, “
Multi-Ellipsoid Contact Elastohydrodynamic Lubrication Performance for Deep Groove Ball Bearing
,”
Tribol. Int.
,
150
, p.
106367
.10.1016/j.triboint.2020.106367
27.
Lei
,
C.
,
Cui
,
P.
,
Cao
,
P.
,
Liu
,
K.
, and
Song
,
R.
,
2021
, “
Research on Comprehensive Stiffness Characteristics of Angular Contact Ball Bearings Under Multi-Factor Coupling Condition
,”
J. Adv. Mech. Des., Syst. Manuf.
,
15
(
6
), p.
JAMDSM0073
.10.1299/jamdsm.2021jamdsm0073
28.
Bal
,
H.
,
Ateş
,
K.
,
Karaçay
,
T.
, and
Aktürk
,
N.
,
2022
, “
Effect of Preload on the Vibrations of EHL Angular Contact Ball Bearings: Theoretical and Experimental Results
,”
Lubricants
,
10
(
3
), p.
46
.10.3390/lubricants10030046
29.
Tian
,
Y.
,
Yan
,
C.
,
Liu
,
Y.
,
Kang
,
J.
,
Lu
,
Z.
, and
Wu
,
L.
,
2023
, “
Dynamic Modelling of Deep Groove Ball Bearings With Different Local Defects Considering Skidding and Thermal Elastohydrodynamic Lubrication
,”
Proc. Inst. Mech. Eng., Part K
,
237
(
3
), pp.
511
533
.10.1177/14644193231182038
30.
Yang
,
Y.
,
Yang
,
W.
, and
Jiang
,
D.
,
2018
, “
Simulation and Experimental Analysis of Rolling Element Bearing Fault in Rotor-Bearing-Casing System
,”
Eng. Failure Anal.
,
92
, pp.
205
221
.10.1016/j.engfailanal.2018.04.053
31.
Yang
,
Y.
,
Liu
,
C.
,
Jiang
,
D.
, and
Behdinan
,
K.
,
2020
, “
Nonlinear Vibration Signatures for Localized Fault of Rolling Element Bearing in Rotor-Bearing-Casing System
,”
Int. J. Mech. Sci.
,
173
, p.
105449
.10.1016/j.ijmecsci.2020.105449
32.
Xu
,
M.
,
Song
,
Z.
,
Ding
,
X.
,
Li
,
G.
,
Shao
,
Y.
, and
Gu
,
J. X.
,
2022
, “
An Improved Dynamic Modelling for Exploring Ball Bearing Vibrations From Time-Varying Oil Film
,”
J. Dyn., Monit. Diagn.
, 1(2), pp.
93
102
.10.37965/jdmd.2022.86
33.
Kochi
,
T.
,
Sakai
,
M.
,
Nogi
,
T.
,
Dong
,
D.
, and
Kimura
,
Y.
,
2019
, “
Experimental Study on the Physics of Thick EHL Film Formation With Grease at Low Speeds
,”
Tribol. Lett.
,
67
(
2
), p.
55
.10.1007/s11249-019-1166-7
34.
Cen
,
H.
, and
Lugt
,
P. M.
,
2020
, “
Replenishment of the EHL Contacts in a Grease Lubricated Ball Bearing
,”
Tribol. Int.
,
146
, p.
106064
.10.1016/j.triboint.2019.106064
35.
Zhang
,
X.
, and
Glovnea
,
R.
,
2021
, “
Grease Film Thickness Measurement in Rolling Bearing Contacts
,”
Proc. Inst. Mech. Eng., Part J
,
235
(
7
), pp.
1430
1439
.10.1177/1350650120961278
36.
Martynenko
,
G.
,
Chernobryvko
,
M.
,
Avramov
,
K.
,
Martynenko
,
V.
,
Tonkonozhenko
,
A.
,
Kozharin
,
V.
, and
Klymenko
,
D.
,
2018
, “
Numerical Simulation of Missile Warhead Operation
,”
Adv. Eng. Software
,
123
, pp.
93
103
.10.1016/j.advengsoft.2018.07.001
37.
Vollan
,
A.
, and
Komzsik
,
L.
,
2012
,
Computational Techniques of Rotor Dynamics With the Finite Element Method
,
CRC Press
, Boca Raton, FL.
38.
Moes
,
H.
,
1992
, “
Optimum Similarity Analysis With Applications Lubrication
,”
Wear
, 159(1), pp.
57
66
.10.1016/0043-1648(92)90286-H
39.
Wu
,
W.
,
Hong
,
J.
,
Li
,
Y.
, and
Li
,
X.
,
2017
, “
Investigation of Non-Uniform Preload Effect on Stiffness Behavior of Angular Contact Ball Bearings
,”
Adv. Mech. Eng.
,
9
(
3
), p.
168781401769411
.10.1177/1687814017694118
40.
Liu
,
J.
,
Tang
,
C.
,
Wu
,
H.
,
Xu
,
Z.
, and
Wang
,
L.
,
2019
, “
An Analytical Calculation Method of the Load Distribution and Stiffness of an Angular Contact Ball Bearing
,”
Mech. Mach. Theory
,
142
, p.
103597
.10.1016/j.mechmachtheory.2019.103597
41.
Li
,
Z.
,
Wang
,
C.
,
Hu
,
X.
,
Wang
,
H.
, and
Yang
,
L.
,
2024
, “
Study on the Effect of Angular Misalignment and Axial Preload on the Mechanical Properties of Four-Point Angular Contact Ball Bearings
,”
Mech. Mach. Theory
,
193
, p.
105565
.10.1016/j.mechmachtheory.2023.105565
You do not currently have access to this content.