Abstract

Demand for increased onboard power generation on small aircraft is ever growing due to increased electrical power demand. The objective of this study is to investigate onboard power generation using waste energy at various altitude and ambient conditions. Experiments were performed on a 2-liter, turbocharged direct-injection intermittent combustion engine fueled with jet fuel (F-24). The turbocharger has an integrated motor-generator system that is designed to generate electricity using the enthalpy in the engine exhaust, or to use as a motor to rotate the turbocharger using the energy stored in onboard energy storage device. An electrically actuated wastegate was used to control useful exhaust flowrate that is used to generate electricity. An external power supply system was used to emulate the energy storage. The engine was installed in the U.S. DEVCOM Army Research Laboratory's altitude chamber in which absolute outside air pressure was controlled up to 37.6 kPa to simulate the altitude conditions up to 7,620 m (25,000 ft). Three different ambient conditions were selected to represent International Standard Atmosphere (ISA), polar, and tropical conditions. Based on the experimental results, a response surface model was developed to predict the power generation of the motor-generator integrated turbocharger using waste energy as a function of altitude, engine power, and the wastegate position. The result from this study provides an insight into onboard power generation method using waste energy at altitude conditions.

References

1.
McGowan
,
R. C.
,
Pieri
,
J. J.
,
Clerkin
,
P. J.
,
Kruger
,
K. M.
,
Szedlmayer
,
M. T.
,
Kim
,
K. S.
,
Gondol
,
D. J.
, et al.,
2019
, “
Experimental Vibration Analysis of an Aircraft Diesel Engine Turbocharger
,”
AIAA
Paper No. 2019-400810.2514/6.2019-4008
2.
Shakhatreh
,
H.
,
Sawalmeh
,
A. H.
,
Al-Fuqaha
,
A.
,
Dou
,
Z.
,
Almaita
,
E.
,
Khalil
,
I.
,
Othman
,
N. S.
,
Khreishah
,
A.
, and
Guizani
,
M.
,
2019
, “
Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges
,”
IEEE Access
,
7
, pp.
48572
48634
.10.1109/ACCESS.2019.2909530
3.
Mohsan
,
S. A. H.
,
Khan
,
M. A.
,
Noor
,
F.
,
Ullah
,
I.
, and
Alsharif
,
M. H.
,
2022
, “
Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review
,”
Drones
,
6
(
6
), p.
147
.10.3390/drones6060147
4.
Federal Aviation Administration,
2016
,
Pilot's Handbook of Aeronautical Knowledge
,
U.S. Department of Transportation
, Paper No. FAA-H-8083-25B.
5.
Cirigliano
,
D.
,
Frisch
,
A. M.
,
Liu
,
F.
, and
Sirignano
,
W. A.
,
2018
, “
Diesel, Spark-Ignition, and Turboprop Engines for Long-Duration Unmanned Air Flights
,”
J. Propul. Power
,
34
(
4
), pp.
878
892
.10.2514/1.B36547
6.
Brelje
,
B. J.
, and
Martins
,
J. R. R. A.
,
2019
, “
Electric, Hybrid, and Turboelectric Fixed-Wing Aircraft: A Review of Concepts, Models, and Design Approaches
,”
Prog. Aerosp. Sci.
,
104
, pp.
1
19
.10.1016/j.paerosci.2018.06.004
7.
Gladin
,
J. C.
,
Perullo
,
C.
,
Tai
,
J. C.
, and
Mavris
,
D. N.
,
2017
, “
A Parametric Study of Hybrid Electric Gas Turbine Propulsion as a Function of Aircraft Size Class and Technology Level
,”
AIAA
Paper No. 2017-0338.10.2514/6.2017-0338
8.
Epstein
,
A. H.
, and
O'Flarity
,
S. M.
,
2019
, “
Considerations for Reducing Aviation's CO2 With Aircraft Electric Propulsion
,”
J Propul. Power
,
35
(
3
), pp.
572
582
.10.2514/1.B37015
9.
Frederick
,
Z. J.
,
Hallock
,
T. J.
,
Ozoroski
,
T. A.
,
Chapman
,
J. W.
,
Kuhnle
,
C. A.
, and
Frederic
,
P. C.
,
2023
, “
Design Exploration of a Mild Hybrid Electrified Aircraft Propulsion Concept
,”
AIAA
Paper No. 2023-4226.10.2514/6.2023-4226
10.
Buticchi
,
G.
,
Wheeler
,
P.
, and
Boroyevich
,
D.
,
2023
, “
The More-Electric Aircraft and Beyond
,”
Proc. IEEE
,
111
(
4
), pp.
356
370
.10.1109/JPROC.2022.3152995
11.
Adu-Gyamfi
,
B. A.
, and
Good
,
C.
,
2022
, “
Electric Aviation: A Review of Concepts and Enabling Technologies
,”
Transp. Eng.
,
9
, p.
100134
.10.1016/j.treng.2022.100134
12.
Tom
,
L.
,
Khowja
,
M.
,
Vakil
,
G.
, and
Gerada
,
C.
,
2021
, “
Commercial Aircraft Electrification—Current State and Future Scope
,”
Energies
,
14
(
24
), p.
8381
.10.3390/en14248381
13.
Cardoso
,
D. S.
,
Fael
,
P. O.
, and
Espírito-Santo
,
A.
,
2020
, “
A Review of Micro and Mild Hybrid Systems
,”
Energy Rep.
,
6
(
1
), pp.
385
390
.10.1016/j.egyr.2019.08.077
14.
Yamashita
,
Y.
,
Sumida
,
K.
,
Ogita
,
H.
, and
Jinnai
,
Y.
,
2006
, “
Development of the ‘Hybrid Turbo’, an Electrically Assisted Turbocharger,” Mitsubishi Heavy Ind
,”
Tech. Rev.
,
43
(
3
), pp.
1
5
.https://www.mhi.co.jp/technology/review/pdf/e433/e433036.pdf
15.
Lee
,
W.
,
Schubert
,
E.
,
Li
,
Y.
,
Li
,
S.
,
Bobba
,
D.
, and
Sarlioglu
,
B.
,
2017
, “
Overview of Electric Turbocharger and Supercharger for Downsized Internal Combustion Engines
,”
IEEE Trans. Transp. Electrif.
,
3
(
1
), pp.
36
47
.10.1109/TTE.2016.2620172
16.
Yang
,
M.
,
Hu
,
C.
,
Bai
,
Y.
,
Deng
,
K.
,
Gu
,
Y.
,
Qian
,
Y.
, and
Liu
,
B.
,
2019
, “
Matching Method of Electric Turbo Compound for Two-Stroke Low-Speed Marine Diesel Engine
,”
Appl. Therm. Eng.
,
158
, p.
113752
.10.1016/j.applthermaleng.2019.113752
17.
Jain
,
A.
,
Nueesch
,
T.
,
Naegele
,
C.
,
Lassus
,
P. M.
, and
Onder
,
C. H.
,
2016
, “
Modeling and Control of a Hybrid Electric Vehicle With an Electrically Assisted Turbocharger
,”
IEEE Trans. Veh. Technol.
,
65
(
6
), pp.
4344
4358
.10.1109/TVT.2016.2533585
18.
Gerada
,
D.
,
Huang
,
X.
,
Zhang
,
C.
,
Zhang
,
H.
,
Zhang
,
X.
, and
Gerada
,
C.
,
2018
, “
Electrical Machines for Automotive Electrically Assisted Turbocharging
,”
IEEE/ASME Trans. Mechatron.
,
23
(
5
), pp.
2054
2065
.10.1109/TMECH.2018.2849081
19.
Song
,
K.
,
Upadhyay
,
D.
, and
Xie
,
H.
,
2019
, “
An Assessment of Performance Trade-Offs in Diesel Engines Equipped With Regenerative Electrically Assisted Turbochargers
,”
Int. J. Engine Res.
,
20
(
5
), pp.
510
526
.10.1177/1468087418762170
20.
Pope
,
A. J.
,
Kim
,
K.
,
Schroen
,
E. S.
,
Clerkin
,
P.
,
Musser
,
M. R.
,
Mattson
,
J.
,
Meininger
,
R.
,
Gibson
,
J.
,
Kang
, S. G.
, et al.,
2024
, “
Sea-Level Characterization of Electrically Assisted Turbocharger for Use on Aviation Diesel Engine
,”
SAE
Paper No. 2024-01-1914.10.4271/2024-01-1914
21.
Terdich
,
N.
,
Martinez-Botas
,
R. F.
,
Romagnoli
,
A.
, and
Pesiridis
,
A.
,
2014
, “
Mild Hybridization Via Electrification of the Air System: Electrically Assisted and Variable Geometry Turbocharging Impact on an Off-Road Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
), p.
031703
.10.1115/1.4025887
22.
Terdich
,
N.
, and
Martinez-Botas
,
R.
,
2013
, “
Experimental Efficiency Characterization of an Electrically Assisted Turbocharger
,”
SAE
Paper No. 2013-24-0122.10.4271/2013-24-0122
23.
Grönman
,
A.
,
Sallinen
,
P.
,
Honkatukia
,
J.
,
Backman
,
J.
, and
Uusitalo
,
A.
,
2016
, “
Design and Experiments of Two-Stage Intercooled Electrically Assisted Turbocharger
,”
Energy Conv. Manag.
,
111
, pp.
115
124
.10.1016/j.enconman.2015.12.055
24.
Dimitriou
,
P.
,
Burke
,
R.
,
Zhang
,
Q.
,
Copeland
,
C.
, and
Stoffels
,
H.
,
2017
, “
Electric Turbocharging for Energy Regeneration and Increased Efficiency at Real Driving Conditions
,”
Appl. Sci.
,
7
(
4
), p.
350
.10.3390/app7040350
25.
Kang
,
S.-G.
,
Pope
,
A. J.
,
Schroen
,
E. S.
,
Kruger
,
K. M.
,
Kim
,
K. S.
,
Kweon
,
C.-B. M.
,
Micka
,
D. J.
, et al.,
2023
, “
Development of Turbocharger Speed Sensor Using Fiber Optic Coupled Optical Method
,”
ASME
Paper No. GT2023-100902.10.1115/GT2023-100902
26.
Kim
,
K. S.
,
Szedlmayer
,
M. T.
,
Kweon
,
C.-B. M.
,
Kruger
,
K. M.
,
Gibson
,
J. A.
,
Lindsey
,
C. A.
,
Meininger
,
R. D.
, et al.,
2017
, “
The Effect of Outside Air Temperature and Cetane Number on Combustion and Performance in a UAV Diesel Engine at Various Altitude Conditions
,”
AIAA
Paper No. 2017-5027.10.2514/6.2017-5027
27.
ISO 2533:
1975
, “
Standard Atmosphere
,”
International Organization for Standardization
,
Geneva, Switzerland
.
28.
Department of Defense (US)
,
2008
, “
Department of Defense Standard Practice Glossary of Definitions, Ground Rules, and Mission Profiles to Define Air Vehicle Performance Capability
,” No. MIL-STD-3013A.
29.
Heywood,
J. B.
,
2019
,
Internal Combustion Engine Fundamentals
, 2nd ed.,
McGraw-Hill Education
,
New York
.
30.
The Mathworks, Inc.
,
2023
, “MATLAB version: R2023b,” The Mathworks, Inc.,
Natick, MA
.
31.
Kang
,
S.-G.
,
Ryu
,
J. I.
,
Motily
,
A. H.
,
Numkiatsakul
,
P.
,
Lee
,
T.
,
Kriven
,
W. M.
,
Kim
,
K. S.
, et al.,
2021
, “
Thermo-Mechanical Response of a Hot Surface Ignition Device Under Aircraft Compression Ignition Engine Conditions
,”
AIAA
Paper No. 2021-3615.10.2514/6.2021-3615
You do not currently have access to this content.