Abstract

The sealing-induced cross-coupling stiffness (CCS) often decreases the rotordynamic stability of turbomachinery. In our previous study, an active negative CCS control strategy applied between two bearings in the middle of the rotor was validated to enhance the stability of the rotor system. In this paper, a different approach was taken by applying both positive and negative CCS control strategies to the nondrive end, aiming to investigate their effects on rotordynamic stability using a rotordynamic model. The model represented a single-span centrifugal compressor rotor with CCS at the seal node. The logarithmic decrements and unbalance response of the rotor system were compared under different CCS applications at the nondrive end and in the span. The results demonstrate that applying both positive and negative CCS at the nondrive end can improve system stability, but the positive CCS strategy has limitations, and its applicability is not as extensive as negative CCS. A “critical stiffness” phenomenon emerges when the rotor system is actively stabilized at the nondrive end, resembling critical resonance. Furthermore, when components like seals introduce cross-coupling stiffness out of the span, they contribute to system stabilization. These findings provide valuable insights into actively enhancing the stability of rotor systems.

References

1.
Vance
,
J.
,
Zeidan
,
F.
, and
Murphy
,
B.
,
2010
,
History of Machinery Rotordynamics
,
Wiley Press
, Hoboken, NJ.
2.
Li
,
H. K.
,
Guo
,
C.
,
Zhang
,
X. W.
,
Zhao
,
P. S.
, and
Zhao
,
X. F.
,
2014
, “
Investigation on Pipeline Failure of Centrifugal Compressor Caused by Fluid Induced Oscillation
,”
J. Vib. Shock
,
33
(
5
), pp.
37
41
.10.13465/j.cnki.jvs.2014.05.007
3.
Cao
,
S. Q.
, and
Chen
,
Y. S.
,
2009
, “
A Review of Modern Rotor/Seal Dynamics
,”
Eng. Mech.
,
26
(
S2
), pp.
68
79
.https://api.semanticscholar.org/CorpusID:203975797
4.
Fan
,
C. C.
,
Syu
,
J. W.
,
Pan
,
M. C.
, and
Tsao
,
W. C.
,
2011
, “
Study of Start-Up Vibration Response for Oil Whirl, Oil Whip and Dry Whip
,”
Mech. Syst. Signal Process.
,
25
(
8
), pp.
3102
3115
.10.1016/j.ymssp.2011.04.012
5.
Briend
,
Y.
,
Chatelet
,
E.
,
Dufour
,
R.
,
Andrianoely
,
M.-A.
,
Legrand
,
F.
,
Sousa
,
M. S.
, Jr.
,
Steffen
,
V.
, Jr.
, and
Baudin
,
S.
,
2021
, “
Dry-Whip Phenomenon in On-Board Rotordynamics: Modeling and Experimentation
,”
J. Sound Vib.
,
513
, p.
116398
.10.1016/j.jsv.2021.116398
6.
Zhao
,
Q.
,
Xu
,
Q.
,
Yao
,
H. L.
, and
Wen
,
B. C.
,
2016
, “
Stability of a Multi-Span Rotor System With Fluid-Induced Self-Excited Vibration
,”
J. Vib. Shock
,
35
(
5
), pp.
196
200
.
7.
Castro
,
H. F. D.
,
Cavalca
,
K. L.
, and
Nordmann
,
R.
,
2008
, “
Whirl and Whip Instabilities in Rotor-Bearing System Considering a Nonlinear Force Model
,”
J. Sound Vib.
,
317
(
1–2
), pp.
273
293
.10.1016/j.jsv.2008.02.047
8.
Xu
,
Q.
,
Niu
,
J.
,
Yao
,
H. L.
,
Zhao
,
L. C.
, and
Wen
,
B. C.
,
2020
, “
Dynamic Vibration Absorber Based Instability Vibration Suppression of a Rotor/Seal System
,”
J. Vib. Shock
,
39
(
14
), pp.
242
250
.https://jvs.sjtu.edu.cn/EN/Y2020/V39/I14/242
9.
Fan
,
C. C.
, and
Pan
,
M. C.
,
2011
, “
Experimental Study on the Whip Elimination of Rotor-Bearing Systems With Electromagnetic Exciters
,”
Mech. Mach. Theory
,
46
(
3
), pp.
290
304
.10.1016/j.mechmachtheory.2010.11.009
10.
Fan
,
C. C.
, and
Pan
,
M. C.
,
2011
, “
Active Elimination of Oil and Dry Whips in a Rotating Machine With an Electromagnetic Actuator
,”
Int. J. Mech. Sci.
,
53
(
2
), pp.
126
134
.10.1016/j.ijmecsci.2010.12.002
11.
Li
,
Q. H.
,
Wang
,
W. M.
,
Weaver
,
B.
, and
Shao
,
X.
,
2018
, “
Active Rotordynamic Stability Control by Use of a Combined Active Magnetic Bearing and Hole Pattern Seal Component for Back-to-Back Centrifugal Compressors
,”
Mech. Mach. Theory
,
127
, pp.
1
12
.10.1016/j.mechmachtheory.2018.04.018
12.
Shao
,
X.
,
Wang
,
W. M.
,
Li
,
W. B.
, and
Li
,
Q. H.
,
2021
, “
Active Fast Vibration Control of Rotating Machinery Via a Novel Electromagnetic Actuator
,”
Struct. Control Health Monit.
,
28
(
5
), p. e2707.10.1002/stc.2707
13.
Wang
,
W. M.
,
Qi
,
P. Y.
,
Li
,
Q. H.
, and
Gao
,
J. J.
,
2014
, “
Investigation on the Instability Control Strategy for Rotor-Bearing System in Centrifugal Compressor
,”
J. Vib. Shock
,
33
(
6
), pp.
102
106
.https://jvs.sjtu.edu.cn/EN/Y2014/V33/I6/102
14.
El-Shafei
,
A.
, and
Dimitri
,
A. S.
,
2010
, “
Controlling Journal Bearing Instability Using Active Magnetic Bearings
,”
ASME J. Eng. Gas Turbines Power
,
132
(
1
), p.
012502
.10.1115/1.3078785
15.
API
,
2002
, “
Axial and Centrifugal Compressors and Expander-Compressors for Petroleum, Chemical and Gas Industry Services
,” 7th ed.,
American Petroleum Institute
,
Washington, DC
, Standard No. 617.
16.
Friswell
,
M. I.
,
Penny
,
J. E. T.
,
Garvey
,
S. D.
, and
Lees
,
A. W.
,
2010
,
Dynamics of Rotating Machines
,
Cambridge University Press
, Cambridge, UK.
17.
Li
,
Q.
,
2018
, “
Investigation on Rotordynamic Stability Evaluation and Control Theory and Method of High-Speed Turbo Machinery
,” Beijing University of Chemical Technology, Beijing, China.
You do not currently have access to this content.