Abstract

Operational, efficiency, safety, and economic issues may arise from the formation and accumulation of sludge, varnish, and coke deposits that result from the degradation of engine lubricants through oxidation or thermal breakdown processes. Having a good understanding of the limits of lubricant performance may be useful in determining the best way to protect the engines. To this end, experiments were conducted using Mobil DTE 732, a turbine lubricant, that is aerated using a coarse gas dispersion tube. The oil then flows through a heated test section with a known axial temperature distribution. The inlet and outlet bulk oil temperature measurements are collected and used to determine the amount of time required for deposit formation and buildup. The induction times were determined for various surface temperatures, up to 236 °C. It was found that increased temperatures shortened induction times, and exposure to oxygen increased the rate at which deposits accumulate, but the nature of the deposits, soft and easily removed, was different from those formed during higher-temperature experiments completed in an inert environment in previous studies. Oil samples collected during the test were analyzed with Fourier transform infrared (FTIR) spectroscopy, with no significant changes detected.

References

1.
Gschwender
,
L. J.
,
Snyder
,
C. E.
,
Nelson
,
L.
,
Fultz
,
G. W.
, and
Saba
,
C. S.
,
2001
, “
Advanced High-Temperature Air Force Turbine Engine Oil Program
,”
Turbine Lubrication in the 21st Century
,
W. R.
Herguth
and
T. M.
Warne
, eds.,
ASTM International
,
West Conshohocken, PA
, pp.
17
24
.
2.
Exxon Mobil Corporation
,
2016
, “
Tech Topic: Coking
,” ExxonMobil Corporation, Houston, TX, accessed July 24, 2019, https://web.archive.org/web/20230609223051/https://www.exxonmobil.com/en/aviation/knowledge-library/resources/engine-oil-coking
3.
Fitch
,
J. C.
, and
Gebarin
,
S.
,
2006
, “
Review of Degradation Mechanisms Leading to Sludge and Varnish in Modern Turbine Oil Formulations
,”
J. ASTM Int.
,
3
(
8
), pp.
1
10
.10.1520/JAI13504
4.
Gatto
,
V. J.
,
Moehle
,
W. E.
,
Cobb
,
T. W.
, and
Schneller
,
E. R.
,
2006
, “
Oxidation Fundamentals and Its Application to Turbine Oil Testing
,”
J. ASTM Int.
,
3
(
4
), pp.
1
20
.10.1520/JAI13498
5.
Naidu
,
S. K.
,
Klaus
,
E. E.
, and
Duda
,
J. L.
,
1986
, “
Kinetic Model for High-Temperature Oxidation of Lubricants
,”
Ind. Eng. Chem. Prod. Res. Dev.
,
25
(
4
), pp.
596
603
.10.1021/i300024a601
6.
Kauffman
,
R. E.
,
Feng
,
A. S.
, and
Karasek
,
K. R.
,
2000
, “
Coke Formation From Aircraft Turbine Engine Oils: Part I—Deposit Analysis and Development of Laboratory Oil Coking Test
,”
Tribol. Trans.
,
43
(
4
), pp.
823
829
.10.1080/10402000008982414
7.
Juárez
,
R.
,
Gutierrez
,
N.
, and
Petersen
,
E. L.
, “
Study of High-Temperature Degradation of Aircraft Gas Turbine Engine Lubricants
,”
AIAA
Paper No. 2023-1252.10.2514/6.2023-1252
8.
Juárez
,
R.
,
Gutierrez
,
N.
, and
Petersen
,
E. L.
,
2023
, “
Temperature Effect on Solid Deposit Formation in Turbine Lubricants
,”
ASME
Paper No. GT2023-102096.10.1115/GT2023-102096
9.
Juárez
,
R.
, and
Petersen
,
E. L.
,
2024
, “
Comparison of the Thermal Stability of Turbine Lubricants at Varying Surface Temperatures
,”
Asia Turbomachinery & Pump Symposium
, Kuala Lumpur, Malaysia, May 13–16, pp.
1
8
.
10.
Mathura
,
S.
,
2020
,
Lubrication Degradation Mechanisms: A Complete Guide
,
CRC Press
,
Boca Raton, FL
.
11.
Mousavi
,
P.
,
Wang
,
D.
,
Grant
,
C. S.
,
Oxenham
,
W.
, and
Hauser
,
P. J.
,
2006
, “
Effects of Antioxidants on the Thermal Degradation of a Polyol Ester Lubricant Using GPC
,”
Ind. Eng. Chem. Res.
,
45
(
1
), pp.
15
22
.10.1021/ie050539b
12.
Zerla
,
F. N.
, and
Moore
,
R. A.
,
1989
, “
Evaluation of Diesel Engine Lubricants by Micro-Oxidation
,”
SAE Trans.
,
98
, pp.
193
199
.10.4271/890239
13.
Popovich
,
M. N.
, and
Hering
,
C.
,
1959
,
Fuels and Lubricants
,
Wiley
,
New York
.
14.
Pawlak
,
Z.
,
2003
,
Tribochemistry of Lubricating Oils
,
Elsevier
,
Amsterdam, The Netherlands
.
15.
Kauffman
,
R. E.
,
Feng
,
A. S.
, and
Karasek
,
K. R.
,
2000
, “
Coke Formation From Aircraft Engine Oils: Part II—Effects of Oil Formulation and Surface Composition
,”
Tribol. Trans.
,
43
(
4
), pp.
677
680
.10.1080/10402000008982395
16.
Zuidema
,
H. H.
,
1946
, “
Oxidation of Lubricating Oils
,”
Chem. Rev.
,
38
(
2
), pp.
197
226
.10.1021/cr60120a001
17.
Aguilar
,
G.
,
Mazzamaro
,
G.
, and
Rasberger
,
M.
,
2010
, “
Oxidative Degradation and Stabilisation of Mineral Oil-Based Lubricants
,”
Chemistry and Technology of Lubricants
,
R. M.
Mortier
,
M. F.
Fox
, and
S. T.
Orszulik
, eds.,
Springer
,
Dordrecht
, The Netherlands, pp.
107
152
.
18.
Jerry Wang
,
C. C.
,
Duda
,
J. L.
, and
Klaus
,
E. E.
,
1994
, “
A Kinetic Model of Lubricant Deposit Formation Under Thin Film Conditions
,”
Tribol. Trans.
,
37
(
1
), pp.
168
174
.10.1080/10402009408983280
19.
Grigor'ev
,
P. F.
,
Tyurin
,
Y. A.
,
Trusenev
,
M. G.
, and
Vakhmyanina
,
M. M.
,
1977
, “
Resistance of Lubrication Oils to Coke Formation
,”
Chem. Technol. Fuels Oils
,
13
(
11
), pp.
815
817
.10.1007/BF00724296
20.
Juárez
,
R.
, and
Petersen
,
E. L.
,
2024
, “
An Experimental Apparatus for the Study of High-Temperature Degradation and Solid-Deposit Formation of Lubricants
,”
Rev. Sci. Instrum.
,
95
(
1
), p.
015109
.10.1063/5.0172398
21.
Juárez
,
R.
,
Gutierrez
,
N.
, and
Petersen
,
E. L.
,
2023
, “
Characterization of an Apparatus to Study Solid Deposit Formation in Lubricating Oils at High Temperatures
,”
ASME J. Turbomach.
,
145
(
3
), p.
031012
.10.1115/1.4055650
22.
ASTM International
,
2020
, “
Standard Test Method for Thermal Oxidation Stability of Aviation Turbine Fuels
,” ASTM International, West Conshohocken, PA, No.
D3241-20c
.https://www.amspecgroup.com/wp-content/uploads/2015/06/amspec_techtalk-astmd3241-thermal.pdf
23.
Novotny-Farkas
,
F.
,
Baumann
,
K.
, and
Leimeter
,
T.
,
2008
, “
Optimizing the Thermo-Oxidation Stability of Gas Turbine Oils
,”
Goriva i Maziva
,
47
(
3
), pp.
220
231
.https://api.semanticscholar.org/CorpusID:44282474
24.
Wu
,
N.
,
Zong
,
Z.-M.
,
Fei
,
Y.-W.
, and
Ma
,
J.
,
2017
, “
Studies on Thermal Oxidation Stability of Aviation Lubricating Oils
,”
MATEC Web Conf.
,
114
, p.
02002
.10.1051/matecconf/201711402002
25.
LibreTexts Chemistry
,
2020
, “
Infrared Spectroscopy Absorption Table
,” LibreTexts Chemistry, accessed May 23, 2023, https://chem.libretexts.org/@go/page/22645
26.
Barbara
,
H. S.
,
2004
,
Infrared Spectroscopy: Fundamentals and Applications
,
Wiley
,
Chichester, UK
.
27.
Juárez
,
R.
, and
Petersen
,
E. L.
, “
Changes in the Composition of Aircraft Lubricants Undergoing Thermal Breakdown
,”
AIAA
Paper No. 2024-2575.10.2514/6.2024-2575
You do not currently have access to this content.