Abstract

Abradable casing liners are used to safely minimize the clearance between rotating turbomachinery blades and outer casings. Reduced clearance improves engine efficiency but can lead to more blade tip rub events. These blade tip rub interactions need to be well understood at engine relevant speeds and temperatures to safely design the engine. Advancements in experimental capabilities to meet these engine relevant conditions and the corresponding measurement and analysis tools will enable these developments. The Ohio State University Gas Turbine Laboratory (OSU GTL), in collaboration with Pratt & Whitney, has expanded its capability in carrying out blade tip rubs to vary the temperature of the casing and blades for temperatures seen in a fan before rubs occur. This expansion of experimental capabilities requires a matching expansion of the methodologies used to analyze and interpret experimental data. In analyzing rubs at varying temperatures, it becomes imperative to understand how the temperature in the rub shoe affects the force transfer functions between the blades contacting the abradable liner and the load cells recording vibrations behind the casing. These transfer functions are necessary for obtaining the actual forces exerted upon the blades during the experiment but are originally obtained at room temperature. This paper examines how the load measuring unit's frequency response function changes based on different temperature conditions and how force measurements are altered between similar tests at significantly different temperatures.

References

1.
Xie
,
Y. J.
,
Wang
,
M. C.
,
Zhang
,
G.
, and
Chang
,
M.
,
2006
, “
Analysis of Superalloy Turbine Blade Tip Cracking During Service
,”
Eng. Failure Anal.
,
13
(
8
), pp.
1429
1436
.10.1016/j.engfailanal.2005.07.022
2.
Park
,
M.
,
Hwang
,
Y.-H.
,
Choi
,
Y.-S.
, and
Kim
,
T.-G.
,
2002
, “
Analysis of a J69-T-25 Engine Turbine Blade Fracture
,”
Eng. Failure Anal.
,
9
(
5
), pp.
593
601
.10.1016/S1350-6307(02)00003-1
3.
Batailly
,
A.
,
Legrand
,
M.
,
Millecamps
,
A.
, and
Garcin
,
F.
,
2014
, “
High-Pressure Compressor Blade Dynamics Under Aerodynamic and Blade-Tip Unilateral Contact Forcings
,”
ASME
Paper No. GT2014-25675.10.1115/GT2014-25675
4.
Batailly
,
A.
,
Legrand
,
M.
,
Millecamps
,
A.
, and
Garcin
,
F.
,
2012
, “
Numerical-Experimental Comparison in the Simulation of Rotor/Stator Interaction Through Blade-Tip/Abradable Coating Contact
,”
ASME J. Eng. Gas Turbines Power
,
134
(
8
), p.
082504
.10.1115/1.4006446
5.
Legrand
,
M.
,
Batailly
,
A.
, and
Pierre
,
C.
,
2012
, “
Numerical Investigation of Abradable Coating Removal in Aircraft Engines Through Plastic Constitutive Law
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
1
), p.
011010
.10.1115/1.4004951
6.
Legrand
,
M.
,
Pierre
,
C.
,
Cartraud
,
P.
, and
Lombard
,
J.-P.
,
2009
, “
Two-Dimensional Modeling of an Aircraft Engine Structural Bladed Disk-Casing Modal Interaction
,”
J. Sound Vib.
,
319
(
1–2
), pp.
366
391
.10.1016/j.jsv.2008.06.019
7.
Williams
,
R. J.
,
2011
, “
Simulation of Blade Casing Interaction Phenomena in Gas Turbines Resulting From Heavy Tip Rubs Using an Implicit Time Marching Method
,”
ASME
Paper No. GT2011-45495.10.1115/GT2011-45495
8.
Monjaraz-Tec
,
C. D.
,
Gross
,
J.
, and
Krack
,
M.
,
2022
, “
A Massless Boundary Component Mode Synthesis Method for Elastodynamic Contact Problems
,”
Comput. Struct.
,
260
, p.
106698
.10.1016/j.compstruc.2021.106698
9.
Piollet
,
E.
,
Nyssen
,
F.
, and
Batailly
,
A.
,
2019
, “
Blade/Casing Rubbing Interactions in Aircraft Engines: Numerical Benchmark and Design Guidelines Based on NASA Rotor 37
,”
J. Sound Vib.
,
460
, p.
114878
.10.1016/j.jsv.2019.114878
10.
Delhez
,
E.
,
Nyssen
,
F.
,
Golinval
,
J.-C.
, and
Batailly
,
A.
,
2021
, “
Assessment of Geometric Nonlinearities Influence on NASA Rotor 37 Response to Blade Tip/Casing Rubbing Events
,”
ASME J. Eng. Gas Turbines Power
,
143
(
11
), p.
111022
.10.1115/1.4051968
11.
Kojtych
,
S.
,
Nyssen
,
F.
,
Audet
,
C.
, and
Batailly
,
A.
,
2023
, “
Methodology for the Redesign of Compressor Blades Undergoing Nonlinear Structural Interactions: Application to Blade-Tip/Casing Contacts
,”
ASME J. Eng. Gas Turbines Power
,
145
(
5
), p.
051002
.10.1115/1.4055681
12.
de Cherisey
,
M.
,
Salles
,
L.
,
Renson
,
L.
,
Vizzaccaro
,
A.
, and
Wong
,
C.
,
2022
, “
Optimization of a Turbomachinery Blade With Regards to Tip-Rub Events
,”
ASME
Paper No. GT2022-82005.10.1115/GT2022-82005
13.
Prabith
,
K.
, and
Krishna
,
I. R. P.
,
2020
, “
The Numerical Modeling of Rotor–Stator Rubbing in Rotating Machinery: A Comprehensive Review
,”
Nonlinear Dyn.
,
101
(
2
), pp.
1317
1363
.10.1007/s11071-020-05832-y
14.
Ma
,
X.
, and
Matthews
,
A.
,
2007
, “
Investigation of Abradable Seal Coating Performance Using Scratch Testing
,”
Surf. Coat. Technol.
,
202
(
4–7
), pp.
1214
1220
.10.1016/j.surfcoat.2007.07.076
15.
Ma
,
X.
, and
Matthews
,
A.
,
2009
, “
Evaluation of Abradable Seal Coating Mechanical Properties
,”
Wear
,
267
(
9–10
), pp.
1501
1510
.10.1016/j.wear.2009.03.044
16.
Yi
,
M.
,
He
,
J.
,
Huang
,
B.
, and
Zhou
,
H.
,
1999
, “
Friction and Wear Behaviour and Abradability of Abradable Seal Coating
,”
Wear
,
231
(
1
), pp.
47
53
.10.1016/S0043-1648(99)00093-9
17.
Pacyna
,
L.
,
Bertret
,
A.
,
Derclaye
,
A.
,
Papeleux
,
L.
, and
Ponthot
,
J.-P.
,
2020
, “
Implementation of a Rig Test for Rotor/Stator Interaction of Low-Pressure Compressor Blades and Comparison of Experimental Results With Numerical Model
,”
ASME
Paper No. GT2020-14266.10.1115/GT2020-14266
18.
Yu
,
B.
,
Ke
,
H.
,
Shen
,
E.
, and
Zhang
,
T.
,
2020
, “
A Review of Blade Tip Clearance–Measuring Technologies for Gas Turbine Engines
,”
Meas. Control
,
53
(
3–4
), pp.
339
357
.10.1177/0020294019877514
19.
Padova
,
C.
,
Dunn
,
M.
,
Barton
,
J.
,
Turner
,
K.
, and
Steen
,
T.
,
2011
, “
Controlled Fan Blade Tip/Shroud Rubs at Engine Conditions
,”
ASME
Paper No. GT2011-45223.10.1115/GT2011-45223
20.
Langenbrunner
,
N.
,
Weaver
,
M.
,
Dunn
,
M. G.
,
Padova
,
C.
, and
Barton
,
J.
,
2015
, “
Dynamic Response of a Metal and a CMC Turbine Blade During a Controlled Rub Event Using a Segmented Shroud
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
062504
.10.1115/1.4028685
21.
Padova
,
C.
,
Barton
,
J.
,
Dunn
,
M. G.
, and
Manwaring
,
S.
,
2007
, “
Experimental Results From Controlled Blade Tip/Shroud Rubs at Engine Speed
,”
ASME J. Turbomach.
,
129
(
4
), pp.
713
723
.10.1115/1.2720869
22.
Padova
,
C.
,
Dunn
,
M. G.
,
Barton
,
J.
,
Turner
,
K.
,
Turner
,
A.
, and
DiTommaso
,
D.
,
2011
, “
Casing Treatment and Blade-Tip Configuration Effects on Controlled Gas Turbine Blade Tip/Shroud Rubs at Engine Conditions
,”
ASME J. Turbomach.
,
133
(
1
), p.
011016
.10.1115/1.4000539
23.
Nitschke
,
S.
,
Wollmann
,
T.
,
Ebert
,
C.
,
Behnisch
,
T.
,
Langkamp
,
A.
,
Lang
,
T.
,
Johann
,
E.
, and
Gude
,
M.
,
2019
, “
An Advanced Experimental Method and Test Rig Concept for Investigating the Dynamic Blade-Tip/Casing Interactions Under Engine-Like Mechanical Conditions
,”
Wear
,
422–423
, pp.
161
166
.10.1016/j.wear.2018.12.072
24.
Ahrens
,
J.
,
Ulbrich
,
H.
, and
Ahaus
,
G.
,
2000
, “
Measurement of Contact Forces During Blade Rubbing
,”
International Conference on Vibrations in Rotating Machinery, IMechE Conference Transactions
, Mechanical Engineering Publications for the Institution of Mechanical Engineers, London, UK, pp.
259
268
.https://www.tib.eu/de/suchen/id/BLCP%3ACN036866202
25.
Reifsnyder
,
R.
,
Keener
,
C.
,
Mathison
,
R.
, and
D'Souza
,
K.
,
2022
, “
Experimental Determination of Blade Tip Rub Forces in a Multi-Blade System
,”
ASME
Paper No. GT2022-83344.10.1115/GT2022-83344
26.
Juang
,
J.-N.
, and
Pappa
,
R. S.
,
1985
, “
An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction
,”
J. Guid., Control, Dyn.
,
8
(
5
), pp.
620
627
.10.2514/3.20031
27.
De Callafon
,
R. A.
,
Moaveni
,
B.
,
Conte
,
J. P.
,
He
,
X.
, and
Udd
,
E.
,
2008
, “
General Realization Algorithm for Modal Identification of Linear Dynamic Systems
,”
J. Eng. Mech.
,
134
(
9
), pp.
712
722
.10.1061/(ASCE)0733-9399(2008)134:9(712)
28.
Emery
,
A.
,
Wolak
,
J.
,
Etemad
,
S.
, and
Choi
,
S.
,
1983
, “
An Experimental Investigation of Temperatures Due to Rubbing at the Blade-Seal Interface in an Aircraft Compressor
,”
Wear
,
91
(
2
), pp.
117
130
.10.1016/0043-1648(83)90248-X
29.
Millecamps
,
A.
,
Brunel
,
J.-F.
,
Dufrenoy
,
P.
,
Garcin
,
F.
, and
Nucci
,
M.
,
2009
, “
Influence of Thermal Effects During Blade-Casing Contact Experiments
,”
ASME
Paper No. DETC2009-86842.10.1115/DETC2009-86842
30.
Chappel
,
D.
,
Howe
,
H.
, and
Vo
,
L.
,
2001
, “
Abradable Seal Testing—Blade Temperatures During Low Speed Rub Event
,”
AIAA
Paper No. 2001-3479.10.2514/6.2001-3479
You do not currently have access to this content.