Abstract

The thermodynamic properties of CO2 do not obey the ideal gas law and the simplified equation of state. The enthalpy and sonic speed depend on both temperature and pressure whereas the enthalpy and the speed of sound of ideal gas, like atmospheric air, depend only on its temperature. These effects add additional complexity to the design and operation of CO2 compressors compared to compressors utilizing air as their working fluid. For example, if the compressor inlet pressure changes during operation, its flow Mach number changes due to the change of the sonic speed which is followed by the change of corrected speed and the performance. This paper focused on the experimental investigation of the performance parameters of a 1.5 stage axial compressor with CO2 gas. The design speed and the design pressure ratio of the compressor are 19,800 rpm and 1.41, respectively. The testing was completed using a 10 MW closed CO2 compressor test loop at the University of Notre Dame Turbomachinery Laboratory. The compressor performance was measured at various compressor inlet conditions to demonstrate the effectiveness of the generalized corrected speed and the corrected flow coefficient in the CO2 compressor performance. Additionally, it is shown that the Reynolds number is connected to other performance parameters through the sonic speed and a set of experimental data is presented with an attempt to separate the effect of the Reynolds number and the effect of the corrected speed on the compressor performance.

References

1.
Dixon
,
S. L.
,
1978
,
Fluid Mechanics and Thermodynamics of Turbomachinery
, 3rd ed.,
Pergamon Press
, Oxford, UK.
2.
Pham
,
H. S.
,
Alpy
,
N.
,
Ferrasse
,
J. H.
,
Boutin
,
O.
,
Tothill
,
M.
,
Quenaut
,
J.
,
Gastaldi
,
O.
,
Cadiou
,
T.
, and
Saez
,
M.
,
2016
, “
An Approach for Establishing the Performance Maps of the sc-CO2 Compressor: Development and Qualification by Means of CFD Simulation
,”
Int. J. Heat Fluid Flow
,
61
, pp.
379
394
.10.1016/j.ijheatfluidflow.2016.05.017
3.
Jeong
,
Y.
,
Cho
,
S. K.
,
Son
,
I. W.
, and
Lee
,
J. I.
,
2023
, “
Evaluation of Off-Design Scaling Methods of Supercritical CO2 Compressor With Experimental Data
,”
Energy
,
278
, p.
127730
.10.1016/j.energy.2023.127730
4.
Anderson
,
M.
,
2021
, “
Compressor Map Corrections for Highly Non-Linear Fluid Properties
,”
ASME
Paper No. GT2021-60275.10.1115/GT2021-60275
5.
Baltadjiev
,
N. D.
,
Lettieri
,
C.
, and
Spakovszky
,
Z. S.
,
2015
, “
An Investigation of Real Gas Effects in Supercritical CO2 Centrifugal Compressors
,”
ASME J. Turbomach.
,
137
, p.
091003
.10.1115/1.4029616
6.
Clementoni
,
E.
,
2021
, “
Comparison of Compressor Performance Map Predictions to Test Data for a Supercritical Carbon Dioxide Brayton Power System
,”
ASME
Paper No. GT2021-58763.10.1115/GT2021-58763
7.
Romei
,
A.
,
Gaetani
,
P.
, and
Persico
,
G.
,
2021
, “
On sCO2 Compressor Performance Maps at Variable Intake Thermodynamic Conditions
,”
ASME
Paper No. GT2021-60252.10.1115/GT2021-60252
8.
Xu
,
P.
, and
Zou
,
Z.
,
2022
, “
A Study of Real-Gas Effect on sCO2 Compressor Performance Using Similitude Method
,”
J. Global Power Propul. Soc.
,
6
, pp.
200
212
.10.33737/jgpps/152462
9.
Pelton
,
R.
,
Bygrave
,
J.
,
Wygant
,
K.
,
Wilkes
,
J.
,
Revak
,
T.
, and
Kim
,
K. Y.
,
2022
, “
Near Critical Point Testing and Performance Results of a sCO2 Compressor for a 10 MWE Brayton Cycle
,”
ASME
Paper No. GT2022-83503.10.1115/GT2022-83503
10.
Toni
,
L.
,
Romei
,
A.
,
Bellobuono
,
E. F.
,
Gaetani
,
P.
,
Valente
,
R.
, and
Persico
,
G.
,
2022
, “
Computational and Experimental Assessment of a MW-Scale Supercritical CO2 Compressor Operating in Multiple Near-Critical Conditions
,”
ASME
Paper No. GT2022-83171.10.1115/GT2022-83171
11.
Wassell
,
A. B.
,
1968
, “
Reynolds Number Effects in Axial Compressors
,”
ASME J. Eng. Power
,
90
(
2
), pp.
149
156
.10.1115/1.3609154
12.
Heidelberg
,
L. J.
, and
Ball
,
C. L.
,
1972
, “
Effect of Reynolds Number on Overall Performance of a 3.7-Inch-Diameter Six-Stage Axial-Flow Compressor
,” NASA Technical Note, No. NASA TN D-6628.
13.
Ha
,
M.
,
Holder
,
J. M.
,
Ghimire
,
S.
,
Ringheisen
,
A.
, and
Turner
,
M. G.
,
2022
, “
Detailed Design and Optimization of the First Stage of an Axial Supercritical CO2 Compressor
,”
ASME
Paper No. GT2022-82590.10.1115/GT2022-82590
14.
Holder
,
J. M.
,
Ringheisen
,
A.
,
Ha
,
M.
,
Ghimire
,
S.
, and
Turner
,
M. G.
,
2022
, “
Improved Automated Turbomachinery Hot-to-Cold Transformation With Cold-to-Hot Capabilities For Off-Design Analysis
,”
AIAA
Paper No. 2022-2436.10.2514/6.2022-2436
15.
Ghimire
,
S.
,
Holder
,
J.
,
Ha
,
M.
,
Turner
,
M. G.
,
Kang
,
J.
,
Morris
,
S. C.
,
Sedlacko
,
K.
, and
Held
,
T. J.
,
2024
, “
Numerical and Experimental Comparison of a Single Stage Axial sCO2 Compressor
,”
ASME
Paper No. GT2024-129128.10.1115/GT2024-129128
16.
Kang
,
J.
,
Vorobiev
,
A.
,
Sutton
,
J. B.
,
Stewart
,
W. S.
,
Cameron
,
J. D.
,
Morris
,
S. C.
,
Turner
,
M. G.
,
Sedlacko
,
K. P.
,
Miller
,
J. D.
, and
Held
,
T. J.
,
2024
, “
Experimental Demonstration of an Advanced CO2 Axial Compressor for CO2-Based Power Cycles and Energy Storage Systems
,”
The 8th International Supercritical CO2 Power Cycles Symposium
, San Antonio, TX, Feb. 27–29, Paper No. 44.
17.
Kang
,
J.
,
Vorobiev
,
A.
,
Cameron
,
J. D.
,
Morris
,
S. C.
,
Wackerly
,
R.
,
Sedlacko
,
K. P.
,
Miller
,
J. D.
, and
Held
,
T. J.
,
2021
, “
10 MW-Class sCO2 Compressor Test Facility at the University of Notre Dame
,”
4th European sCO2 Conference for Energy Systems
, Prague, Czech Republic, Mar. 22–26, Paper No. 2021-sCO2.eu-144.https://duepublico2.uni-due.de/servlets/MCRFileNodeServlet/duepublico_derivate_00073835/144_Kang_et_al_10MW-Class_sCO2.pdf
18.
Schults
,
M. J.
,
1962
, “
The Polytropic Analysis of Centrifugal Compressors
,”
ASME J. Eng. Power
,
84
(
1
), pp.
69
82
.10.1115/1.3673381
19.
Dunn
,
P. F.
,
2010
,
Measurement and Data Analysis for Engineering and Science
, 2nd ed.,
CRC Press
, Boca Raton, FL.
20.
Zemansky
,
M.,W.
, and
Dittman
,
R.
,
1997
,
Heat and Thermodynamics: An Intermediate Textbook
, 7th ed.,
McGraw-Hill
, New York.
21.
Lemmon
,
E. W.
,
Bell
,
I. H.
,
Huber
,
M. L.
,
McLinden
, and
M. O.
,
2018
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0
,”
National Institute of Standards and Technology
, Gaithersburg, MD.10.18434/T4/1502528
You do not currently have access to this content.