Abstract

Methanol has garnered significant attention over the past few years due to its potential as a hydrogen carrier in a future green economy. As a result, it is a leading candidate to displace fossil fuels in the transportation sector. Although recent research efforts have been directed toward adopting the fuel in compression ignition engines, methanol is an ideal fuel for light-duty high compression ratio spark ignition engines due to its fast laminar flame speed, high auto-ignition resistance, and high cooling potential. In this work, methanol was combusted in a single-cylinder spark ignition engine with a compression ratio of 14.8 and compared to E10 (regular grade gasoline – 10% ethanol, 90% ethanol by volume), E75 (75% ethanol, 25% gasoline by volume), and hydrous ethanol (92% ethanol, 8% water by mass) at 6 bar net indicated mean effective pressure (IMEPn). Methanol achieved a net fuel conversion efficiency of 42.5% compared to 41.6% with hydrous ethanol, 39.5% with E75, and 36.2% with E10. Next, the performance of the high compression ratio spark ignition engine was then compared to a methanol-fueled light-duty single-cylinder compression ignition engine. At loads of 6 bar and 10 bar IMEPn, the net fuel conversion efficiency of stoichiometric spark ignition was higher than lean mixing-controlled compression ignition by 2.6 and 3.3 percentage points, respectively. The net fuel conversion efficiency of mixing-controlled compression ignition was higher than spark ignition by 0.2 percentage points at a load of 16 bar IMEPn. The competitiveness of spark ignition with mixing-controlled compression ignition was due to the high thermodynamic penalty associated with injecting a high heat of vaporization fuel like methanol close to top dead center where heat from the working fluid is absorbed to evaporate the fuel rather than being converted to thermodynamic work. To remedy this, an advanced compression ignition strategy using premixed and partially premixed injections was demonstrated to provide the highest net fuel conversion efficiency across the tested combustion strategies by avoiding this thermodynamic penalty and taking full advantage of the lean and unthrottled nature of compression ignition.

References

1.
Dec
,
J.
,
1997
, “
A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging*
,”
SAE
Paper No. 970873.10.4271/970873
2.
Najt
,
P.
, and
Foster
,
D.
,
1983
, “
Compression-Ignited Homogeneous Charge Combustion
,”
SAE
Paper No. 830264.10.4271/830264
3.
Snyder
,
J.
,
Dronniou
,
N.
,
Dec
,
J.
, and
Hanson
,
R.
,
2011
, “
PLIF Measurements of Thermal Stratification in an HCCI Engine Under Fired Operation
,”
SAE Int. J. Eng.
,
4
(
1
), pp.
1669
1688
.10.4271/2011-01-1291
4.
Westbrook
,
C.
, and
Curran
,
H.
,
2019
, “
Mathematical Modelling of Gas-Phase Complex Reaction Systems: Pyrolysis and Combustion: Chapter 7 Detailed Kinetics of Fossil and Renewable Fuel Combustion
,”
Elsevier
, Amsterdam, The Netherlands.
5.
Lopez-Pintor
,
D.
,
Dec
,
J.
, and
Gentz
,
G.
,
2019
, “
Φ-Sensitivity for LTGC Engines: Understanding the Fundamentals and Tailoring Fuel Blends to Maximize This Property
,”
SAE
Paper No. 2019-01-0961.10.4271/2019-01-0961
6.
Sjoberg
,
M.
, and
Dec
,
J.
,
2011
, “
Smoothing HCCI Heat Release With Vaporization-Cooling-Induced Thermal Stratification Using Ethanol
,”
SAE Int. J. Fuels Lubr.
,
5
(
1
), pp.
7
27
.10.4271/2011-01-1760
7.
Gainey
,
B.
, and
Lawler
,
B.
,
2021
, “
The Role of Alcohol Biofuels in Advanced Combustion: An Analysis
,”
Fuel
,
283
, p.
118915
.10.1016/j.fuel.2020.118915
8.
Bozzano
,
G.
, and
Manenti
,
F.
,
2016
, “
Efficient Methanol Synthesis: Perspectives, Technologies and Optimization Strategies
,”
Prog. Energy Combust. Sci.
,
56
, pp.
71
105
.10.1016/j.pecs.2016.06.001
9.
Fielder
,
E.
,
Grossmann
,
G.
,
Burkhard Kersebohm
,
D.
,
Weiss
,
G.
, and
Witte
,
C.
,
2003
, Methanol.
Ullmann's Encyclopedia of Industrial Chemistry
, 6th ed., Vol.
21
,
Wiley-VCH
,
Weinheim, Germany
, pp.
611
635
.
10.
Pearson
,
R. J.
,
Eisaman
,
M. D.
,
Turner
,
J. W. G.
,
Edwards
,
P. P.
,
Jiang
,
Z.
,
Kuznetsov
,
V. L.
,
Littau
,
K. A.
,
di Marco
,
L.
, and
Taylor
,
S. R. G.
,
2012
, “
Energy Storage Via Carbon-Neutral Fuels Made From CO2, Water, and Renewable Energy
,”
Proc IEEE
,
100
(
2
), pp.
440
460
.10.1109/JPROC.2011.2168369
11.
Svensson
,
E.
,
Li
,
C.
,
Shamun
,
S.
,
Johansson
,
B.
,
Tuner
,
M.
,
Perlman
,
C.
, and
Lehtiniemi
,
F. M.
,
2016
, “
Potential Levels of Soot, NOx, HC and CO for Methanol Combustion
,”
SAE
Paper No. 2016-01-0887.10.4271/2016-01-0887
12.
Gainey
,
B.
,
Gandolfo
,
J.
,
Yan
,
Z.
, and
Lawler
,
B.
,
2023
, “
Mixing Controlled Compression Ignition With Methanol: An Experimental Study of Injection and EGR Strategy
,”
Int. J. Eng. Res.
,
24
(
5
), pp.
1961
1972
.10.1177/14680874221105161
13.
Liu
,
J.
,
Yao
,
A.
, and
Yao
,
C.
,
2015
, “
Effects of Diesel Injection Pressure on the Performance and Emissions of a HD Common-Rail Diesel Engine Fueled With Diesel/Methanol Dual Fuel
,”
Fuel
,
140
, pp.
192
200
.10.1016/j.fuel.2014.09.109
14.
Jamrozik
,
A.
,
Tutak
,
W.
,
Gnatowska
,
R.
, and
Nowak
,
Ł.
,
2019
, “
Comparative Analysis of the Combustion Stability of Diesel-Methanol and Diesel-Ethanol in a Dual Fuel Engine
,”
Energies
,
12
(
6
), p.
971
.10.3390/en12060971
15.
Pan
,
W.
,
Yao
,
C.
,
Han
,
G.
,
Wei
,
H.
, and
Wang
,
Q.
,
2015
, “
The Impact of Intake Air Temperature on Performance and Exhaust Emissions of a Diesel Methanol Dual Fuel Engine
,”
Fuel
,
162
, pp.
101
110
.10.1016/j.fuel.2015.08.073
16.
Agarwal
,
A. K.
,
Kumar
,
V.
,
Jena
,
A.
, and
Kalwar
,
A.
,
2022
, “
Fuel Injection Strategy Optimisation and Experimental Performance and Emissions Evaluation of Diesel Displacement by Port Fuel Injected Methanol in a Retrofitted Mid-Size Genset Engine Prototype
,”
Energy
,
248
, p.
123593
.10.1016/j.energy.2022.123593
17.
García
,
A.
,
Monsalve-Serrano
,
J.
,
Micó
,
C.
, and
Guzmán-Mendoza
,
M.
,
2023
, “
Parametric Evaluation of Neat Methanol Combustion in a Light-Duty Compression Ignition Engine
,”
Fuel Process. Technol.
,
249
, p.
107850
.10.1016/j.fuproc.2023.107850
18.
Shamun
,
S.
,
Haşimoğlu
,
C.
,
Murcak
,
A.
,
Andersson
,
O.
,
Tunér
,
M.
, and
Tunestål
,
P.
,
2017
, “
Experimental Investigation of Methanol Compression Ignition in a High Compression Ratio HD Engine Using a Box-Behnken Design
,”
Fuel
,
209
, pp.
624
633
.10.1016/j.fuel.2017.08.039
19.
Shamun
,
S.
,
Shen
,
M.
,
Johansson
,
B.
,
Tuner
,
M.
,
Pagels
,
J.
,
Gudmundsson
,
A.
, and
Tunestal
,
P.
,
2016
, “
Exhaust PM Emissions Analysis of Alcohol Fueled Heavy-Duty Engine Utilizing PPC
,”
SAE Int. J. Eng.
,
9
(
4
), pp.
2142
2152
.10.4271/2016-01-2288
20.
Gainey
,
B.
,
Yan
,
Z.
,
Gandolfo
,
J.
, and
Lawler
,
B.
,
2022
, “
High Load Compression Ignition of Wet Ethanol Using a Triple Injection Strategy
,”
Energies
,
15
(
10
), p.
3507
.10.3390/en15103507
21.
Powell
,
T.
,
1975
, “
Racing Experiences With Methanol and Ethanol-Based Motor-Fuel Blends
,”
SAE
Paper No. 750124.10.4271/750124
22.
Ranzi
,
E.
,
Frassoldati
,
A.
,
Grana
,
R.
,
Cuoci
,
A.
,
Faravelli
,
T.
,
Kelley
,
A. P.
, and
Law
,
C. K.
,
2012
, “
Hierarchical and Comparative Kinetic Modeling of Laminar Flame Speeds of Hydrocarbon and Oxygenated Fuels
,”
Prog. Energy Combust. Sci.
,
38
(
4
), pp.
468
501
.10.1016/j.pecs.2012.03.004
23.
Andersen
,
V.
,
Anderson
,
J.
,
Wallington
,
T.
,
Mueller
,
S.
, and
Nielsen
,
O.
,
2010
, “
Vapor Pressures of Alcohol−Gasoline Blends
,”
Energy Fuels
,
24
(
6
), pp.
3647
3654
.10.1021/ef100254w
24.
Wouters
,
C.
,
Burkardt
,
P.
, and
Pischinger
,
S.
,
2022
, “
Limits of Compression Ratio in Spark-Ignition Combustion With Methanol
,”
Int. J. Eng. Res.
,
23
(
5
), pp.
793
803
.10.1177/14680874211043390
25.
Brinkman
,
N.
,
1977
, “
Effect of Compression Ratio on Exhaust Emissions and Performance of a Methanol-Fueled Single-Cylinder Engine
,”
SAE
Paper No. 770791.10.4271/770791
26.
Balki
,
M.
, and
Sayin
,
C.
,
2014
, “
The Effect of Compression Ratio on the Performance, Emissions and Combustion of an SI (Spark Ignition) Engine Fueled With Pure Ethanol, Methanol and Unleaded Gasoline
,”
Energy
,
71
, pp.
194
201
.10.1016/j.energy.2014.04.074
27.
Brusstar
,
M.
,
Stuhldreher
,
M.
,
Swain
,
D.
, and
Pidgeon
,
W.
,
2002
, “
High Efficiency and Low Emissions From a Port-Injected Engine With Neat Alcohol Fuels
,”
SAE
Paper No. 2002-01-2743.10.4271/2002-01-2743
28.
Gainey
,
B.
,
Hariharan
,
D.
,
Yan
,
Z.
,
Zilg
,
S.
,
Rahimi Boldaji
,
M.
, and
Lawler
,
B.
,
2020
, “
A Split Injection of Wet Ethanol to Enable Thermally Stratified Compression Ignition
,”
Int. J. Eng. Res.
,
21
(
8
), pp.
1441
1453
.10.1177/1468087418810587
29.
Wallner
,
T.
,
2011
, “
Correlation Between Speciated Hydrocarbon Emissions and Flame Ionization Detector Response for Gasoline/Alcohol Blends
,”
ASME J. Eng. Gas Turbines Power
,
133
(
8
), p.
082801
.10.1115/1.4002893
30.
McBride
,
B.
,
Zehe
,
M.
, and
Gordon
,
S.
,
2002
, “
NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species
,” NASA, Cleveland, OH, Report No.
TP—2002-211556
.https://ntrs.nasa.gov/citations/20020085330
31.
Gainey
,
B.
,
Longtin
,
J. P.
, and
Lawler
,
B.
,
2019
, “
A Guide to Uncertainty Quantification for Experimental Engine Research and Heat Release Analysis
,”
SAE Int. J. Eng.
,
12
(
5
), pp.
509
523
.10.4271/03-12-05-0033
32.
Eng
,
J.
,
2002
, “
Characterization of Pressure Waves in HCCI Combustion
,”
SAE
Paper No. 2002-01-2859.10.4271/2002-01-2859
33.
Galloni
,
E.
,
2012
, “
Dynamic Knock Detection and quantification in a Spark Ignition Engine by Means of a Pressure Based Method
,”
Energy Convers. Manage.
,
64
, pp.
256
262
.10.1016/j.enconman.2012.05.015
34.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
35.
Anderson
,
W.
,
Yang
,
J.
,
Brehob
,
D.
,
Vallance
,
J.
, and
Whiteaker
,
R. M.
,
1996
, “
Understanding the Thermodynamics of Direct Injection Spark Ignition (DISI) Combustion Systems: An Analytical and Experimental Investigation
,”
SAE
Paper No. 962018.10.4271/962018
36.
Verhelst
,
S.
,
Turner
,
J. W. G.
,
Sileghem
,
L.
, and
Vancoillie
,
J.
,
2019
, “
Methanol as a Fuel for Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
70
, pp.
43
88
.10.1016/j.pecs.2018.10.001
37.
Anderson
,
J.
,
Leone
,
T.
,
Shelby
,
M.
,
Wallington
,
T.
,
Bizub
,
J.
,
Foster
,
M.
,
Lynskey
,
M.
, and
Polovina
,
D.
,
2012
, “
Octane Numbers of Ethanol-Gasoline Blends: Measurements and Novel Estimation Method From Molar Composition
,”
SAE
Paper No. 2012-01-1274.10.4271/2012-01-1274
38.
Urushihara
,
T.
,
Yamaguchi
,
K.
,
Yoshizawa
,
K.
, and
Itoh
,
T.
,
2005
, “
A Study of a Gasoline-Fueled Compression Ignition Engine ∼ Expansion of HCCI Operation Range Using SI Combustion as a Trigger of Compression Ignition
,”
SAE
Paper No. 2005-01-0180.10.4271/2005-01-0180
39.
Manofsky
,
L.
,
Vavra
,
J.
,
Assanis
,
D.
, and
Babajimopoulos
,
A.
,
2011
, “
Bridging the Gap Between HCCI and SI: Spark-Assisted Compression Ignition
,”
SAE
Paper No. 2011-01-1179.10.4271/2011-01-1179
40.
Wu
,
B.
,
Wang
,
L.
,
Shen
,
X.
,
Yan
,
R.
, and
Dong
,
P.
,
2016
, “
Comparison of Lean Burn Characteristics of an SI Engine Fueled With Methanol and Gasoline Under Idle Condition
,”
Appl. Therm. Eng.
,
95
, pp.
264
270
.10.1016/j.applthermaleng.2015.11.029
41.
Gülder
,
O.
,
1982
, “
Laminar Burning Velocities of Methanol, Ethanol and Isooctane-Air Mixtures
,”
Symp. (Int.) Combust.
,
19
(
1
), pp.
275
281
.10.1016/S0082-0784(82)80198-7
42.
Hinton
,
N.
,
Stone
,
R.
,
Cracknell
,
R.
, and
Olm
,
C.
,
2018
, “
Aqueous Ethanol Laminar Burning Velocity Measurements Using Constant Volume Bomb Methods
,”
Fuel
,
214
, pp.
127
134
.10.1016/j.fuel.2017.10.113
43.
Iodice
,
P.
, and
Cardone
,
M.
,
2021
, “
Ethanol/Gasoline Blends as Alternative Fuel in Last Generation Spark-Ignition Engines: A Review on CO and HC Engine Out Emissions
,”
Energies
,
14
(
13
), p.
4034
.10.3390/en14134034
44.
Nabi
,
M.
,
2010
, “
Theoretical Investigation of Engine Thermal Efficiency, Adiabatic Flame Temperature, NOx Emission and Combustion-Related Parameters for Different Oxygenated Fuels
,”
Appl. Therm. Eng.
,
30
(
8–9
), pp.
839
844
.10.1016/j.applthermaleng.2009.12.015
45.
Gainey
,
B.
,
Gohn
,
J.
,
Yan
,
Z.
,
Rahimi-Boldaji
,
M.
, and
Lawler
,
B.
,
2019
, “
HCCI With Wet Ethanol: Investigating the Charge Cooling Effect of a High Latent Heat of Vaporization Fuel In LTC
,”
SAE
Paper No. 2019-24-0024.10.4271/2019-24-0024
46.
Gainey
,
B.
,
Yan
,
Z.
,
Gohn
,
J.
,
Rahimi Boldaji
,
M.
, and
Lawler
,
B.
,
2019
, “
TSCI With Wet Ethanol: An Investigation of the Effects of Injection Strategy on a Diesel Engine Architecture
,”
SAE
Paper No. 2019-01-1146.10.4271/2019-01-1146
47.
Liu
,
J.
,
Bommisetty
,
H. K.
, and
Dumitrescu
,
C. E.
,
2019
, “
Experimental Investigation of a Heavy-Duty Compression-Ignition Engine Retrofitted to Natural Gas Spark-Ignition Operation
,”
ASME. J. Energy Resour. Technol.
,
141
(
11
), p.
112207
.10.1115/1.4043749
48.
Mahendar
,
S. K.
,
Larsson
,
T.
, and
Erlandsson
,
A. C.
,
2021
, “
Alcohol Lean Burn in Heavy Duty Engines: Achieving 25 Bar IMEP With High Efficiency in Spark Ignited Operation
,”
Int. J. Eng. Res.
,
22
(
11
), pp.
3313
3324
.10.1177/1468087420972897
49.
Li
,
J.
,
Gong
,
C.
,
Liu
,
B.
,
Su
,
Y.
,
Dou
,
H.
, and
Liu
,
X.
,
2009
, “
Combustion and Hydrocarbon (HC) Emissions From a Spark-Ignition Engine Fueled With Gasoline and Methanol During Cold Start
,”
Energy Fuels
,
23
(
10
), pp.
4937
4942
.10.1021/ef900502e
50.
Wen
,
M.
,
Wang
,
C.
,
Zhang
,
Z.
,
Wu
,
Y.
,
Liu
,
H.
,
Jin
,
C.
,
Zheng
,
Z.
, and
Yao
,
M.
,
2024
, “
Effect of Operating Parameters on Start of Performance of Compression Ignition Engine by Using High-Pressure Direct Injection Pure Methanol
,”
Appl. Therm. Eng.
,
249
, p.
123352
.10.1016/j.applthermaleng.2024.123352
51.
Wei
,
Y.
,
Liu
,
S.
,
Liu
,
F.
,
Liu
,
J.
,
Zhu
,
Z.
, and
Li
,
G.
,
2009
, “
Formaldehyde and Methanol Emissions From a Methanol/Gasoline-Fueled Spark-Ignition (SI) Engine
,”
Energy Fuels
,
23
(
6
), pp.
3313
3318
.10.1021/ef900175h
You do not currently have access to this content.