Graphical Abstract Figure

Comparison between simulations and experiments for equivalence ratio distribution in horizontal planes

Graphical Abstract Figure

Comparison between simulations and experiments for equivalence ratio distribution in horizontal planes

Close modal

Abstract

Hydrogen (H2), as a carbon-free fuel, is considered as one of the most promising solutions to reduce the carbon footprint of hard-to-decarbonize energy and transportation sectors. As such, hydrogen-fueled internal combustion engines (H2 ICEs) have recently been receiving increasing attention, particularly in applications such as on-road/off-road heavy-duty transport and combined heat and power. The direct injection (DI) of gaseous hydrogen into the combustion chamber offers great potential for achieving high power density and high engine efficiency, while mitigating the risk of backfire and reducing pre-ignition. However, the numerical simulation of H2 DI system remains a formidable challenge associated with the high computational cost of reproducing compressible supersonic flow and shocks in narrow injector passages and in near-nozzle regions. In general, there is a lack of well-established and validated practices for the modeling of high-pressure H2 DI in large-bore engines. To this end, this study focuses on computational fluid dynamics (CFD) modeling of the mixture formation process in a heavy-duty optical engine employing a medium-pressure H2 DI system. Both large eddy simulations (LES) and Reynolds Averaged Navier–Stokes (RANS) simulations are performed and evaluated against optical data. Gaseous hydrogen is injected into the combustion chamber via a centrally located outward opening hollow-cone injector at a pressure of 40 bar. Simulations are carried out for two injection timings, namely, −120 and −60 °CA. The numerical predictions for H2 distribution in different horizontal and vertical planes during the compression stroke are systematically compared against optical data obtained through planar laser-induced fluorescence (PLIF) measurements. Overall, the LES approach using the Dynamic Structure model is found to have good predictive capabilities for the early jet penetration in terms of length and shape, as well as the later H2 distributions. However, the unsteady RANS approach with the renormalization group kϵ model, which is widely used by industry to model heavy-duty ICEs, significantly underpredicts the H2 mixing, even at similar mesh resolution to that used in LES. These results indicate that there is a need for the improvement of mixing submodels within the RANS approach when applied to H2 DI simulations.

References

1.
Akal
,
D.
,
Öztuna
,
S.
, and
Büyükak In
,
M. K.
,
2020
, “
A Review of Hydrogen Usage in Internal Combustion Engines (gasoline-Lpg-Diesel) From Combustion Performance Aspect
,”
Int. J. Hydrogen Energy
,
45
(
60
), pp.
35257
35268
.10.1016/j.ijhydene.2020.02.001
2.
Lee
,
J. T.
,
Kim
,
Y.
,
Lee
,
C.
, and
Caton
,
J.
,
2001
, “
An Investigation of a Cause of Backfire and Its Control Due to Crevice Volumes in a Hydrogen Fueled Engine
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
204
210
.10.1115/1.1339985
3.
White
,
C.
,
Steeper
,
R.
, and
Lutz
,
A. E.
,
2006
, “
The Hydrogen-Fueled Internal Combustion Engine: A Technical Review
,”
Int. J. Hydrogen Energy
,
31
(
10
), pp.
1292
1305
.10.1016/j.ijhydene.2005.12.001
4.
Verhelst
,
S.
, and
Wallner
,
T.
,
2009
, “
Hydrogen-Fueled Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
35
(
6
), pp.
490
527
.10.1016/j.pecs.2009.08.001
5.
Verhelst
,
S.
,
Demuynck
,
J.
,
Sierens
,
R.
,
Scarcelli
,
R.
,
Matthias
,
N. S.
, and
Wallner
,
T.
,
2013
, “
Update on the Progress of Hydrogen-Fueled Internal Combustion Engines
,” G. Arzamedi, L. Gandia, and P. Dieguez, eds.,
Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety
, Elsevier, Amsterdam, The Netherlands, pp.
381
400
.10.1016/B978-0-444-56352-1.00016-7
6.
Yip
,
H. L.
,
Srna
,
A.
,
Yuen
,
A. C. Y.
,
Kook
,
S.
,
Taylor
,
R. A.
,
Yeoh
,
G. H.
,
Medwell
,
P. R.
, and
Chan
,
Q. N.
,
2019
, “
A Review of Hydrogen Direct Injection for Internal Combustion Engines: Towards Carbon-Free Combustion
,”
Appl. Sci.
,
9
(
22
), p.
4842
.10.3390/app9224842
7.
Aleiferis
,
P.
, and
Rosati
,
M.
,
2012
, “
Flame Chemiluminescence and OH LIF Imaging in a Hydrogen-Fuelled Spark-Ignition Engine
,”
Int. J. Hydrogen Energy
,
37
(
2
), pp.
1797
1812
.10.1016/j.ijhydene.2011.10.010
8.
Liu
,
X.
,
Srna
,
A.
,
Yip
,
H. L.
,
Kook
,
S.
,
Chan
,
Q. N.
, and
Hawkes
,
E. R.
,
2021
, “
Performance and Emissions of Hydrogen-Diesel Dual Direct Injection (H2DDI) in a Single-Cylinder Compression-Ignition Engine
,”
Int. J. Hydrogen Energy
,
46
(
1
), pp.
1302
1314
.10.1016/j.ijhydene.2020.10.006
9.
Lee
,
S.
,
Kim
,
G.
, and
Bae
,
C.
,
2022
, “
Effect of Injection and Ignition Timing on a Hydrogen-Lean Stratified Charge Combustion Engine
,”
Int. J. Engine Res.
,
23
(
5
), pp.
816
829
.10.1177/14680874211034682
10.
Fischer
,
M.
,
Sterlepper
,
S.
,
Pischinger
,
S.
,
Seibel
,
J.
,
Kramer
,
U.
, and
Lorenz
,
T.
,
2022
, “
Operation Principles for Hydrogen Spark Ignited Direct Injection Engines for Passenger Car Applications
,”
Int. J. Hydrogen Energy
,
47
(
8
), pp.
5638
5649
.10.1016/j.ijhydene.2021.11.134
11.
Wimmer
,
A.
,
Wallner
,
T.
,
Ringler
,
J.
, and
Gerbig
,
F.
,
2005
, “
H2-Direct Injection–a Highly Promising Combustion Concept
,”
SAE
Paper No. 2005-01-0108.10.4271/2005-01-0108
12.
Wallner
,
T.
,
Nande
,
A. M.
, and
Naber
,
J. D.
,
2009
, “
Study of Basic Injection Configurations Using a Direct-Injection Hydrogen Research Engine
,”
SAE Int. J. Engines
,
2
(
1
), pp.
1221
1230
.10.4271/2009-01-1418
13.
Wallner
,
T.
,
Matthias
,
N. S.
, and
Scarcelli
,
R.
,
2011
, “
Influence of Injection Strategy in a High-Efficiency Hydrogen Direct Injection Engine
,”
SAE Int. J. Fuels Lubr.
,
5
(
1
), pp.
289
300
.10.4271/2011-01-2001
14.
Salazar
,
V. M.
, and
Kaiser
,
S. A.
,
2009
, “
An Optical Study of Mixture Preparation in a Hydrogen-Fueled Engine With Direct Injection Using Different Nozzle Designs
,”
SAE Int. J. Engines
,
2
(
2
), pp.
119
131
.10.4271/2009-01-2682
15.
Salazar
,
V.
, and
Kaiser
,
S.
,
2011
, “
Interaction of Intake-Induced Flow and Injection Jet in a Direct-Injection Hydrogen-Fueled Engine Measured by PIV
,”
SAE
Paper No. 2011-01-0673.10.4271/2011-01-0673
16.
Salazar
,
V.
, and
Kaiser
,
S.
,
2011
, “
Influence of the Flow Field on Flame Propagation in a Hydrogen-Fueled Internal Combustion Engine
,”
SAE Int. J. Engines
,
4
(
2
), pp.
2376
2394
.10.4271/2011-24-0098
17.
Laichter
,
J.
,
Kaiser
,
S. A.
,
Rajasegar
,
R.
, and
Srna
,
A.
,
2023
, “
Optical Investigation of Mixture Formation in a Hydrogen-Fueled Heavy-Duty Engine With Direct-Injection
,”
SAE
Paper No. 2023-01-0240.10.4271/2023-01-0240
18.
Laichter
,
J.
,
Kaiser
,
S.
,
Rajasegar
,
R.
, and
Srna
,
A.
,
2023
, “
Impact of Mixture Inhomogeneity and Ignition Location on Early Flame Kernel Evolution in a Direct-Injection Hydrogen-Fueled Heavy-Duty Optical Engine
,”
SAE
Paper No. 2023-32-0044.10.4271/2023-32-0044
19.
Scarcelli
,
R.
,
Wallner
,
T.
,
Matthias
,
N.
,
Salazar
,
V.
, and
Kaiser
,
S.
,
2011
, “
Numerical and Optical Evolution of Gaseous Jets in Direct Injection Hydrogen Engines
,”
SAE
Paper No. 2011-01-0675.10.4271/2011-01-0675
20.
Scarcelli
,
R.
,
Wallner
,
T.
,
Matthias
,
N.
,
Salazar
,
V.
, and
Kaiser
,
S.
,
2011
, “
Mixture Formation in Direct Injection Hydrogen Engines: CFD and Optical Analysis of Single-and Multi-Hole Nozzles
,”
SAE Int. J. Engines
,
4
(
2
), pp.
2361
2375
.10.4271/2011-24-0096
21.
Lucchini
,
T.
,
D'errico
,
G.
, and
Fiocco
,
M.
,
2011
, “
Multi-Dimensional Modeling of Gas Exchange and Fuel-Air Mixing Processes in a Direct-Injection, Gas Fueled Engine
,”
SAE
Paper No. 2011-24-0036.10.4271/2011-24-0036
22.
Le Moine
,
J.
,
Senecal
,
P.
,
Kaiser
,
S. A.
,
Salazar
,
V. M.
,
Anders
,
J. W.
,
Svensson
,
K.
, and
Gehrke
,
C.
,
2015
, “
A Computational Study of the Mixture Preparation in a Direct–Injection Hydrogen Engine
,”
ASME J. Eng. Gas Turbines Power
,
137
(
11
), p.
111508
.10.1115/1.4030397
23.
Babayev
,
R.
,
Andersson
,
A.
,
Dalmau
,
A. S.
,
Im
,
H. G.
, and
Johansson
,
B.
,
2021
, “
Computational Characterization of Hydrogen Direct Injection and Nonpremixed Combustion in a Compression-Ignition Engine
,”
Int. J. Hydrogen Energy
,
46
(
35
), pp.
18678
18696
.10.1016/j.ijhydene.2021.02.223
24.
Addepalli
,
S. K.
,
Pei
,
Y.
,
Zhang
,
Y.
, and
Scarcelli
,
R.
,
2022
, “
Multi-Dimensional Modeling of Mixture Preparation in a Direct Injection Engine Fueled With Gaseous Hydrogen
,”
Int. J. Hydrogen Energy
,
47
(
67
), pp.
29085
29101
.10.1016/j.ijhydene.2022.06.182
25.
Wu
,
B.
,
Torelli
,
R.
, and
Pei
,
Y.
,
2023
, “
Numerical Modeling of Hydrogen Mixing in a Direct-Injection Engine Fueled With Gaseous Hydrogen
,”
Fuel
,
341
, p.
127725
.10.1016/j.fuel.2023.127725
26.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2021
, “
CONVERGE 3.0
,”
Convergent Science
,
Madison, WI
.
27.
Yosri
,
M. R.
,
Ho
,
J. Z.
,
Meulemans
,
M.
,
Talei
,
M.
,
Gordon
,
R.
,
Brear
,
M.
,
Cosby
,
D.
, and
Lacey
,
J.
,
2021
, “
Large-Eddy Simulation of Methane Direct Injection Using the Full Injector Geometry
,”
Fuel
,
290
, p.
120019
.10.1016/j.fuel.2020.120019
28.
Yosri
,
M.
,
Kar
,
T.
,
Talei
,
M.
,
Gordon
,
R. L.
,
Brear
,
M. J.
, and
Khosravi
,
M.
,
2023
, “
Large-Eddy Simulation of a Natural Gas Direct Injection Spark Ignition Engine With Different Injection Timings
,”
Fuel
,
334
, p.
126535
.10.1016/j.fuel.2022.126535
29.
Yin
,
Y.
,
Lei
,
Y.
,
Shen
,
H.
,
Yi
,
Y.
,
Zhao
,
T.
, and
Qiu
,
T.
,
2024
, “
Modeling Investigation on Transient Behaviors of Gaseous Ammonia Jet Flow With Direct Injection
,”
Fuel
,
358
, p.
129997
.10.1016/j.fuel.2023.129997
You do not currently have access to this content.