Abstract

Establishing a continuous cooling film is an effective way to thermally protect hot-gas path components of gas turbines. For aero-engines, effusion cooling is the state-of-the-art method for developing cooling films. However, the cooling film generated by this method is far from ideal, as discrete miniature cooling air jets exiting from effusion cooling holes leave large gaps between cooling holes without adequate cooling film protection. Furthermore, effusion cooling jets can experience strong liftoff from component surfaces and are subsequently diluted due to mixing with the main flow. Recent advances in additive manufacturing (AM) technologies have enabled the fabrication of porous materials with precisely engineered lattice structures, significantly enhancing the film cooling effectiveness of hot-gas path components through transpiration cooling. A prior study has demonstrated highly promising transpiration cooling results by using a family of lattice geometries referred to as triply periodic minimal surface (TPMS) lattices. The present study experimentally investigates the influence of various TPMS lattice orientations on the film cooling effectiveness. Three types of TPMS structures, namely, diamond, Koch, and gyroid, are compared to demonstrate that the TPMS lattice orientation angle affects transpiration cooling performance, with different levels of sensitivity according to the TPMS structure. The TPMS lattice structures studied in this investigation are fabricated by stereolithography (SLA) three-dimensional printing. The adiabatic cooling film effectiveness (AFE) is measured using pressure sensitive paint (PSP).

References

1.
Badran
,
O. O.
,
1999
, “
Gas-Turbine Performance Improvements
,”
Appl. Energy
,
64
(
1–4
), pp.
263
273
.10.1016/S0306-2619(99)00088-4
2.
Caron
,
P.
, and
Khan
,
T.
,
1999
, “
Evolution of Ni-Based Superalloys for Single Crystal Gas Turbine Blade Applications
,”
Aerosp. Sci. Technol.
,
3
(
8
), pp.
513
523
.10.1016/S1270-9638(99)00108-X
3.
Ligrani
,
P.
,
2013
, “
Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines
,”
Int. J. Rotating Mach.
,
2013
, pp.
1
32
.10.1155/2013/275653
4.
Andrews
,
G. E.
,
Alikhanizadeh
,
M.
,
Tehrani
,
F. B.
,
Hussain
,
C. I.
, and
Azari
,
M. S. K.
,
1988
, “
Small Diameter Film Cooling Holes: The Influence of Hole Size and Pitch
,”
Int. J. Turbo Jet Engines
, 5, pp.
61
73
.10.1515/TJJ.1988.5.1-4.61
5.
Cerri
,
G.
,
Giovannelli
,
A.
,
Battisti
,
L.
, and
Fedrizzi
,
R.
,
2007
, “
Advances in Effusive Cooling Techniques of Gas Turbines
,”
Appl. Therm. Eng.
,
27
(
4
), pp.
692
698
.10.1016/j.applthermaleng.2006.10.012
6.
Zhou
,
J.
,
Wang
,
X.
, and
Li
,
J.
,
2019
, “
Influences of Effusion Hole Diameter on Impingement/Effusion Cooling Performance at Turbine Blade Leading Edge
,”
Int. J. Heat Mass Transf.
,
134
, pp.
1101
1118
.10.1016/j.ijheatmasstransfer.2019.02.054
7.
Wei
,
H.
,
Ai
,
J. L.
,
Zu
,
Y. Q.
, and
Ding
,
L.
,
2019
, “
Heat Transfer Characteristics of Fan-Shaped Hole Effusion Cooling for a Constant Hole Exit Width – Numerical Simulation and Experimental Validation
,”
Appl. Therm. Eng.
,
160
(
2019
), p.
113978
.10.1016/j.applthermaleng.2019.113978
8.
Yang
,
L.
,
Dai
,
W.
,
Rao
,
Y.
, and
Chyu
,
M. K.
,
2019
, “
Optimization of the Hole Distribution of an Effusively Cooled Surface Facing Non-Uniform Incoming Temperature Using Deep Learning Approaches
,”
Int. J. Heat Mass Transf.
,
145
(
2019
), p.
118749
.10.1016/j.ijheatmasstransfer.2019.118749
9.
Andreini
,
A.
,
Becchi
,
R.
,
Facchini
,
B.
,
Picchi
,
A.
, and
Peschiulli
,
A.
,
2017
, “
The Effect of Effusion Holes Inclination Angle on the Adiabatic Film Cooling Effectiveness in a Three-Sector Gas Turbine Combustor Rig With a Realistic Swirling Flow
,”
Int. J. Therm. Sci.
,
121
, pp.
75
88
.10.1016/j.ijthermalsci.2017.07.003
10.
Cho
,
H. H.
,
Rhee
,
D. H.
, and
Goldstein
,
R. J.
,
2008
, “
Effects of Hole Arrangements on Local Heat/Mass Transfer for Impingement/Effusion Cooling With Small Hole Spacing
,”
ASME J. Turbomach.
,
130
(
4
), p.
041003
.10.1115/1.2812325
11.
Paitich
,
L. C.
,
Richer
,
P.
,
Jodoin
,
B.
,
Pyo
,
Y.
,
Yun
,
S.
, and
Hong
,
Z.
,
2021
, “
Directional Effects of Effusion Cooling on the Cooling Film Effectiveness
,”
AIAA J.
,
60
(
1
), pp.
1
11
.10.2514/1.J060625
12.
Hinse
,
M.
,
Richer
,
P.
,
Jodoin
,
B.
,
Yildiz
,
K.
,
Yun
,
S.
, and
Hong
,
Z.
,
2020
, “
Numerical and Experimental Studies of Transpiration Cooling Film Effectiveness Over Porous Materials
,”
J. Thermophys. Heat Transf.
, 36(4), pp.
803
817
.10.2514/1.T6510
13.
Eckert
,
E. R. G.
, and
Livingood
,
J. N. B.
,
1953
, “
Comparison of Effectiveness of Convection, Transpiration, and Film Cooling Methods With Air as Coolant
,” National Advisory Committee for Aeronautics Technical Note, p.
3010
, Report No.
NACA-TR-1182
.https://ntrs.nasa.gov/citations/19930092205
14.
Curry
,
D.
, Gomez, A., and
Johnston
,
C.
,
1971
, “
Radiative, Ablative and Active Cooling Thermal Protection Studies for the Leading Edge of a Fixed-Straight Wing Space Shuttle
,”
AlAA
Paper No. 1971-445.10.2514/6.1971-445
15.
Weinbaum
,
S.
, and
Wheeler
,
H. L.
,
1949
, “
Heat Transfer in Sweat-Cooled Porous Metals
,”
J. Appl. Phys.
,
20
(
1
), pp.
113
122
.10.1063/1.1698226
16.
Krittacom
,
B.
,
Amatachaya
,
P.
, and
Sangchot
,
R.
,
2014
, “
Energy Balance in Al-Co Open-Celled Foam of Transpiration Cooling
,”
Applied Mechanics and Materials
, 575(2014), pp.
41
45
.10.4028/www.scientific.net/AMM.575.41
17.
Ma
,
J.
,
Luo
,
X.
,
Li
,
H.
, and
Liu
,
Y.
,
2016
, “
An Experimental Investigation on Transpiration Cooling Based on the Multilaminated Sintered Woven Wire Mesh Structures
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
3
), p.
031005
.10.1115/1.4032921
18.
Huang
,
G.
,
Liao
,
Z.
,
Xu
,
R.
,
Zhu
,
Y.
, and
Jiang
,
P. X.
,
2020
, “
Self-Pumping Transpiration Cooling With a Protective Porous Armor
,”
Appl. Therm. Eng.
,
164
(
2020
), p.
114485
.10.1016/j.applthermaleng.2019.114485
19.
McDonough
,
J. R.
,
2020
, “
A Perspective on the Current and Future Roles of Additive Manufacturing in Process Engineering, With an Emphasis on Heat Transfer
,”
Therm. Sci. Eng. Prog.
,
19
, p.
100594
.10.1016/j.tsep.2020.100594
20.
Ngo
,
T. D.
,
Kashani
,
A.
,
Imbalzano
,
G.
,
Nguyen
,
K. T. Q.
, and
Hui
,
D.
,
2018
, “
Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges
,”
Compos. B Eng.
,
143
, pp.
172
196
.10.1016/j.compositesb.2018.02.012
21.
Kim
,
M.
,
Shin
,
D. H.
,
Kim
,
J. S.
,
Lee
,
B. J.
, and
Lee
,
J.
,
2021
, “
Experimental Investigation of Effusion and Transpiration Air Cooling for Single Turbine Blade
,”
Appl. Therm. Eng.
,
182
(
2021
), p.
116156
.10.1016/j.applthermaleng.2020.116156
22.
Huang
,
G.
,
Min
,
Z.
,
Yang
,
L.
,
Jiang
,
P. X.
, and
Chyu
,
M.
,
2018
, “
Transpiration Cooling for Additive Manufactured Porous Plates With Partition Walls
,”
Int. J. Heat Mass Transf.
,
124
, pp.
1076
1087
.10.1016/j.ijheatmasstransfer.2018.03.110
23.
Min
,
Z.
,
Huang
,
G.
,
Parbat
,
S. N.
,
Yang
,
L.
, and
Chyu
,
M. K.
,
2019
, “
Experimental Investigation on Additively Manufactured Transpiration and Film Cooling Structures
,”
ASME J. Turbomach.
,
141
(
3
), p.
031009
.10.1115/1.4042009
24.
Al-Ketan
,
O.
, and
Abu Al-Rub
,
R. K.
,
2019
, “
Multifunctional Mechanical Metamaterials Based on Triply Periodic Minimal Surface Lattices
,”
Adv. Eng. Mater.
,
21
(
10
), p.
1900524
.10.1002/adem.201900524
25.
Qureshi
,
Z. A.
,
Elnajjar
,
E.
,
Al-Ketan
,
O.
,
Al-Rub
,
R. A.
, and
Al-Omari
,
S. B.
,
2021
, “
Heat Transfer Performance of a Finned Metal Foam-Phase Change Material (FMF- PCM) System Incorporating Triply Periodic Minimal Surfaces (TPMS)
,”
Int. J. Heat Mass Transf.
, 170(2021), p.
121001
.10.1016/j.ijheatmasstransfer.2021.121001
26.
Hussain
,
I.
,
Al-Ketan
,
O.
,
Renda
,
F.
,
Malvezzi
,
M.
,
Prattichizzo
,
D.
,
Seneviratne
,
L.
,
Abu Al-Rub
,
R. K.
, and
Gan
,
D.
,
2020
, “
Design and Prototyping Soft–Rigid Tendon-Driven Modular Grippers Using Interpenetrating Phase Composites Materials
,”
Int. J. Rob. Res.
,
39
(
14
), pp.
1635
1646
.10.1177/0278364920907697
27.
Maskery
,
I.
,
Sturm
,
L.
,
Aremu
,
A. O.
,
Panesar
,
A.
,
Williams
,
C. B.
,
Tuck
,
C. J.
,
Wildman
,
R. D.
,
Ashcroft
,
A.
, and
Hague
,
R. J. M.
,
2018
, “
Insights Into the Mechanical Properties of Several Triply Periodic Minimal Surface Lattice Structures Made by Polymer Additive Manufacturing
,”
Polymer
,
152
, pp.
62
71
.10.1016/j.polymer.2017.11.049
28.
Han
,
C.
,
Li
,
Y.
,
Wang
,
Q.
,
Wen
,
S.
,
Wei
,
Q.
,
Yan
,
C.
,
Hao
,
L.
,
Liu
,
J.
, and
Shi
,
Y.
,
2018
, “
Continuous Functionally Graded Porous Titanium Scaffolds Manufactured by Selective Laser Melting for Bone Implants
,”
J. Mech. Behav. Biomed. Mater.
,
80
, pp.
119
127
.10.1016/j.jmbbm.2018.01.013
29.
Femmer
,
T.
,
Kuehne
,
A. J. C.
, and
Wessling
,
M.
,
2015
, “
Estimation of the Structure Dependent Performance of 3-D Rapid Prototyped Membranes
,”
Chem. Eng. J.
,
273
, pp.
438
445
.10.1016/j.cej.2015.03.029
30.
Li
,
W.
,
Li
,
W.
, and
Yu
,
Z.
,
2022
, “
Heat Transfer Enhancement of Water-Cooled Triply Periodic Minimal Surface Heat Exchangers
,”
Appl. Therm. Eng.
,
217
, p.
119198
.10.1016/j.applthermaleng.2022.119198
31.
Broumand
,
M.
,
Son
,
J.
,
Pyo
,
Y.
,
Yun
,
S.
, and
Hong
,
Z.
,
2024
, “
TPMS-Based Transpiration Cooling for Film Cooling Enhancement
,”
Int. J. Heat Mass Transf.
,
231
, p.
125824
.10.1016/j.ijheatmasstransfer.2024.125824
32.
Fu
,
J.
,
Thomas
,
H. R.
, and
Li
,
C.
,
2021
, “
Tortuosity of Porous Media: Image Analysis and Physical Simulation
,”
Earth Sci. Rev.
,
212
, p.
103439
.10.1016/j.earscirev.2020.103439
33.
Grisan
,
E.
,
Foracchia
,
M.
, and
Ruggeri
,
A.
,
2003
, “
A Novel Method for the Automatic Evaluation of Retinal Vessel Tortuosity
,”
Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Vol.
1
, Cancun, Mexico, Sept. 17–21, pp.
866
869
.10.1109/IEMBS.2003.1279902
34.
Formlabs
, 2023, “
Formlabs Material Library, Everything You Need to Start Printing
,” Formlabs, Somerville, MA, accessed Dec. 16, 2023, https://formlabs-media.formlabs.com/filer_public/ac/89/ac8963db-f54a-4cac-8fe9-fb740a7b06f1/formlabs-materials-library.pdf
35.
Lei
,
Z.
,
Mahallati
,
A.
,
Cunningham
,
M.
, and
Germain
,
P.
,
2010
, “
Influence of Inlet Swirl on the Aerodynamics of a Model Turbofan Lobed Mixer
,”
ASME
Paper No. IMECE2010-3911610.1115/IMECE2010-39116.
36.
Liu
,
T.
,
Sullivan
,
J. P.
,
Asai
,
K.
,
Klein
,
C.
, and
Egami
,
Y.
,
2005
,
Pressure and Temperature Sensitive Paints
,
Springer
, Berlin.
37.
Sajben
,
M.
,
1993
, “
Uncertainty Estimates for Pressure Sensitive Paint Measurements
,”
AIAA J.
,
31
(
11
), pp.
2105
2110
.10.2514/3.11897
38.
Barigozzi
,
G.
,
Mucignat
,
C.
,
Abdeh
,
H.
,
Scandella
,
D.
, and
Dolci
,
G.
,
2018
, “
Assessment of Binary PSP Technique for Film Cooling Effectiveness Measurement on Nozzle Vane Cascade With Cutback Trailing Edge
,”
Exp. Therm. Fluid Sci.
,
97
, pp.
431
443
.10.1016/j.expthermflusci.2018.05.015
39.
Natsui
,
G.
,
Little
,
Z.
,
Kapat
,
J. S.
,
Dees
,
J. E.
, and
Laskowski
,
G.
,
2016
, “
A Detailed Uncertainty Analysis of Adiabatic Film Cooling Effectiveness Measurements Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
138
(
8
), p.
081007
.10.1115/1.4032674
40.
Iyer
,
J.
,
Moore
,
T.
,
Nguyen
,
D.
,
Roy
,
P.
, and
Stolaroff
,
J.
,
2022
, “
Heat Transfer and Pressure Drop Characteristics of Heat Exchangers Based on Triply Periodic Minimal and Periodic Nodal Surfaces
,”
Appl. Therm. Eng.
,
209
, p.
118192
.10.1016/j.applthermaleng.2022.118192
41.
Reynolds
,
B. W.
,
Fee
,
C. J.
,
Morison
,
K. R.
, and
Holland
,
D. J.
,
2023
, “
Characterisation of Heat Transfer Within 3D Printed TPMS Heat Exchangers
,”
Int. J. Heat Mass Transf.
,
212
, p.
124264
.10.1016/j.ijheatmasstransfer.2023.124264
42.
Xu
,
G.
,
Liu
,
Y.
,
Luo
,
X.
,
Ma
,
J.
, and
Li
,
H.
,
2015
, “
Experimental Investigation of Transpiration Cooling for Sintered Woven Wire Mesh Structures
,”
Int. J. Heat Mass Transf.
,
91
, pp.
898
907
.10.1016/j.ijheatmasstransfer.2015.07.060
43.
Zhou
,
Z.
,
Lv
,
Y.
,
He
,
F.
,
Liu
,
T.
, and
Wang
,
J.
,
2024
, “
Pore-Scale Investigation of Transpiration Cooling Based on Triply Periodic Minimal Surface
,”
Int. J. Therm. Sci.
,
201
, p.
109019
.10.1016/j.ijthermalsci.2024.109019
You do not currently have access to this content.