The synchronous steady-state operation of a centrally preloaded single mass flexible rotor supported in squeeze film bearing dampers is examined theoretically. Assuming the short bearing approximation and symmetric motions, frequency response curves are presented exhibiting the effect of relevant system parameters on rotor excursion amplitudes and unbalance transmissibilities for both pressurized and unpressurized lubricant supply. Hence, the influence of rotor flexibility, rotor mass distribution, rotor speed, bearing dimensions, lubricant viscosity, support flexibility can be readily determined, allowing for optimal rotor bearing system design. It is shown that with pressurized bearing mounts, the possibility of undesirable operation modes is eliminated and a smooth passage through the first pin-pin critical speed of the rotor is feasible, while absence of pressurization significantly limits the maximum safe unbalance in the vicinity of this critical speed. Significant decrease in transmissibility and rotor excursion amplitudes over those obtainable with rigid mounts are shown to be a practical possibility, with consequent decrease in the vibration level of the rotor mounts and prolongation of rolling element bearing life, while maintaining acceptable rotor vibration amplitudes. A design example is included to illustrate the use of the data.

This content is only available via PDF.
You do not currently have access to this content.