Abstract

Prognosis health management is an effective way to improve the operational safety and economy of industrial equipment. The development of an accurate and quick response model to monitor equipment health status, predict performance, and diagnose faults is key to its implementation. However, the inevitable performance degradation of industrial equipment over time poses a significant challenge to such a model. In this work, we adopt a Bayesian approach to calibrate thermodynamic simulations with time-dependent parameters that account for performance degradation. The relationship between degradation and time is modeled through an assumed functional form, referred to as a health indicator. The proposed health indicator calibration method gives a rapid assessment of degraded equipment performance and elucidates how degradation relates to time. The novelty of this paper is that it regards performance degradation as an uncertainty quantification problem rather than a deterministic problem. The health indicator calibration method is validated on a natural gas compressor and a gas turbine. The results show that when severe degradation occurs, functional calibration improves predictive performance over nonfunctional calibration (i.e., independent of time). The introduced method provides valuable decision support to extend the service life and reduce maintenance costs for industrial equipment. Its feedback in operation can also develop the service assessment criteria and inform the design of subsequent generations of industrial equipment.

References

1.
Vorontsov
,
S.
,
Irmisch
,
S.
,
Karelin
,
A.
, and
Rocha
,
M.
,
2009
, “
Alstom GT11N2 M Expansion Turbine Design Modification and Operation Experience
,”
ASME
Paper No. GT2009-59268.10.1115/GT2009-59268
2.
Lee
,
J.
,
Wu
,
F.
,
Zhao
,
W.
,
Ghaffari
,
M.
,
Liao
,
L.
, and
Siegel
,
D.
,
2014
, “
Prognostics and Health Management Design for Rotary Machinery systems-Reviews, Methodology and Applications
,”
Mech. Syst. Signal Process.
,
42
(
1–2
), pp.
314
334
.10.1016/j.ymssp.2013.06.004
3.
Xia
,
T.
,
Dong
,
Y.
,
Xiao
,
L.
,
Du
,
S.
,
Pan
,
E.
, and
Xi
,
L.
,
2018
, “
Recent Advances in Prognostics and Health Management for Advanced Manufacturing Paradigms
,”
Reliab. Eng. Syst. Saf.
,
178
, pp.
255
268
.10.1016/j.ress.2018.06.021
4.
Aker
,
G. F.
, and
Saravanamuttoo
,
H. I. H.
,
1989
, “
Predicting Gas Turbine Performance Degradation Due to Compressor Fouling Using Computer Simulation Techniques
,”
ASME J. Eng. Gas Turbines Power
,
111
(
2
), pp.
343
350
.10.1115/1.3240259
5.
Arnold
,
S. M.
,
Goldberg
,
R. K.
,
Lerch
,
B. A.
, and
Saleeb
,
A. F.
,
2009
, “
An Overview of Prognosis Health Management Research at GRC for Gas Turbine Engine Structures With Special Emphasis on Deformation and Damage Modeling
,”
Annual Conference of the PHM Society
, San Diego, CA, Sept. 27–Oct. 1, pp.
1
19
.https://ntrs.nasa.gov/citations/20090040684
6.
Li
,
Y. G.
,
2010
, “
Gas Turbine Performance and Health Status Estimation Using Adaptive Gas Path Analysis
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
041701
.10.1115/1.3159378
7.
Escher
,
P. C.
,
1995
, “
Pythia: An Object-Orientated Gas Path Analysis Computer Program for General Applications
,” Ph.D. thesis,
School of Mechanical Engineering, Cranfield University, UK
.
8.
Verbist
,
M. L.
,
Visser
,
W. P. J.
,
van Buijtenen
,
J. P.
, and
Duivis
,
R.
,
2011
, “
Gas Path Analysis on KLM In-Flight Engine Data
,”
ASME
Paper No. 54631.10.1115/54631
9.
Larsson
,
E.
,
Åslund
,
J.
,
Frisk
,
E.
, and
Eriksson
,
L.
,
2014
, “
Gas Turbine Modeling for Diagnosis and Control
,”
ASME J. Eng. Gas Turbines Power
,
136
(
7
), p.
071601
.10.1115/1.4026598
10.
Gatto
,
E. L.
,
Li
,
Y. G.
, and
Pilidis
,
P.
,
2006
, “
Gas Turbine Off-Design Performance Adaptation Using a Genetic Algorithm
,”
ASME
Paper No. 42371.10.1115/42371
11.
Ying
,
Y.
,
Cao
,
Y.
,
Li
,
S.
, and
Li
,
J.
,
2015
, “
Nonlinear Steady-State Model Based Gas Turbine Health Status Estimation Approach With Improved Particle Swarm Optimization Algorithm
,”
Math. Probl. Eng.
,
2015
, pp.
1
12
.10.1155/2015/940757
12.
Loboda
,
I.
,
Feldshteyn
,
Y.
, and
Ponomaryov
,
V.
,
2012
, “
Neural Networks for Gas Turbine Fault Identification: Multilayer Perceptron or Radial Basis Network?
,”
Int. J. Turbo Jet-Eng.
,
29
(
1
), pp.
37
48
.10.1515/tjj-2012-0005
13.
Zhou
,
D.
,
Yao
,
Q.
,
Wu
,
H.
,
Ma
,
S.
, and
Zhang
,
H.
,
2020
, “
Fault Diagnosis of Gas Turbine Based on Partly Interpretable Convolutional Neural Networks
,”
Energy
,
200
, p.
117467
.10.1016/j.energy.2020.117467
14.
Romessis
,
C.
, and
Mathioudakis
,
K.
,
2006
, “
Bayesian Network Approach for Gas Path Fault Diagnosis
,”
ASME J. Eng. Gas Turbines Power
,
128
(
1
), pp.
64
72
.10.1115/1.1924536
15.
Marinai
,
L.
, and
Singh
,
R.
,
2006
,
A Fuzzy Logic Approach to Gas Path Diagnostics in Aero-Engines. Computational Intelligence in Fault Diagnosis
,
Springer
,
London
, UK, pp.
37
79
.
16.
Mohammadi
,
E.
, and
Montazeri-Gh
,
M. A.
,
2015
, “
Fuzzy-Based Gas Turbine Fault Detection and Identification System for Full and Part-Load Performance Deterioration
,”
Aerosp. Sci. Technol.
,
46
, pp.
82
93
.10.1016/j.ast.2015.07.002
17.
Vieira
,
F. M.
,
de Oliveira Bizarria
,
C.
,
Nascimento
,
C. L.
, and
Fitzgibbon
,
K. T.
,
2009
, “
Health Monitoring Using Support Vector Classification on an Auxiliary Power Unit
,”
IEEE Aerospace Conference
,
IEEE
, Big Sky, MT, Mar. 7–14, pp.
1
7
.10.1109/AERO.2009.4839655
18.
Palmé
,
T.
,
Liard
,
F.
, and
Cameron
,
D.
,
2014
, “
Hybrid Modeling of Heavy Duty Gas Turbines for On-Line Performance Monitoring
,”
ASME
Paper No. 26015.10.1115/26015
19.
Igie
,
U.
,
Diez-Gonzalez
,
P.
,
Giraud
,
A.
, and
Minervino
,
O.
,
2016
, “
Evaluating Gas Turbine Performance Using Machine-Generated Data: Quantifying Degradation and Impacts of Compressor Washing
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
122601
.10.1115/1.4033748
20.
Allen
,
C. W.
,
Holcomb
,
C. M.
, and
de Oliveira
,
M.
,
2019
, “
Estimating Recoverable Performance Degradation Rates and Optimizing Maintenance Scheduling
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011032
.10.1115/1.4041004
21.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc.
,
63
(
3
), pp.
425
464
.10.1111/1467-9868.00294
22.
Li
,
M.
, and
Wang
,
Z.
,
2019
, “
Surrogate Model Uncertainty Quantification for Reliability-Based Design Optimization
,”
Reliab. Eng. Syst. Saf.
,
192
, p.
106432
.10.1016/j.ress.2019.03.039
23.
Sarkar
,
S.
,
Mondal
,
S.
,
Joly
,
M.
,
Lynch
,
M. E.
,
Bopardikar
,
S. D.
,
Acharya
,
R.
, and
Perdikaris
,
P.
,
2019
, “
Multifidelity and Multiscale Bayesian Framework for High-Dimensional Engineering Design and Calibration
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121001
.10.1115/1.4044598
24.
Bayarri
,
M. J.
,
Berger
,
J. O.
,
Paulo
,
R.
,
Sacks
,
J.
,
Cafeo
,
J. A.
,
Cavendish
,
J.
,
Lin
,
C.-H.
, and
Tu
,
J.
,
2007
, “
A Framework for Validation of Computer Models
,”
Technometrics
,
49
(
2
), pp.
138
154
.10.1198/004017007000000092
25.
Higdon
,
D.
,
Kennedy
,
M.
,
Cavendish
,
J. C.
,
Cafeo
,
J. A.
, and
Ryne
,
R. D.
,
2004
, “
Combining Field Data and Computer Simulations for Calibration and Prediction
,”
SIAM J. Sci. Comput.
,
26
(
2
), pp.
448
466
.10.1137/S1064827503426693
26.
O'Hagan
,
A.
,
2006
, “
Bayesian Analysis of Computer Code Outputs: A Tutorial
,”
Reliab. Eng. Syst. Saf.
,
91
(
10–11
), pp.
1290
1300
.10.1016/j.ress.2005.11.025
27.
Arendt
,
P. D.
,
Apley
,
D. W.
,
Chen
,
W.
,
Lamb
,
D.
, and
Gorsich
,
D.
,
2012
, “
Improving Identifiability in Model Calibration Using Multiple Responses
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100909
.10.1115/1.4007573
28.
Zaidan
,
M. A.
,
Mills
,
A. R.
, and
Harrison
,
R. F.
,
2013
, “
Bayesian Framework for Aerospace Gas Turbine Engine Prognostics
,” IEEE Aerospace Conference,
IEEE
, Big Sky, MT, Mar. 2–9, pp.
1
8
.10.1109/AERO.2013.6496856
29.
Wang
,
L.
,
Fang
,
X.
,
Subramaniyan
,
A.
,
Jothiprasad
,
G.
,
Gardner
,
M.
,
Kale
,
A.
,
Akkaram
,
S.
,
Beeson
,
D.
,
Wiggs
,
G.
, and
Nelson
,
J.
,
2011
, “
Challenges in Uncertainty, Calibration, Validation and Predictability of Engineering Analysis Models
,”
ASME
Paper No. 54662.10.1115/54662
30.
Chao
,
M. A.
,
Lilley
,
D. S.
,
Mathé
,
P.
, and
Schloßhauer
,
V.
,
2015
, “
Calibration and Uncertainty Quantification of Gas Turbine Performance Models
,”
ASME
Paper No. 56765.10.1115/56765
31.
Odom
,
F. M.
, and
Muster
,
G. L.
,
2009
, “
Tutorial on Modeling of gas turbine driven Centrifugal Compressors
,”
PSIG Annual Meeting. Pipeline Simulation Interest Group
, Moody Gardens, Galveston, TX, p.
09A4
.
32.
Li
,
Y. G.
, and
Nilkitsaranont
,
P.
,
2009
, “
Gas Turbine Performance Prognostic for Condition-Based Maintenance
,”
Appl. Energy
,
86
(
10
), pp.
2152
2161
.10.1016/j.apenergy.2009.02.011
33.
Saxena
,
A.
,
Goebel
,
K.
,
Simon
,
D.
, and
Eklund
,
N.
,
2008
, “
Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation
,”
International Conference on Prognostics and Health Management
,
IEEE
, Denver, CO, Oct. 6–9, pp.
1
9
.10.1109/PHM.2008.4711414
34.
MacIsaac
,
B.
, and
Langton
,
R.
,
2011
,
Gas Turbine Propulsion Systems
,
Wiley
,
UK
, pp.
299
305
.
35.
Hartigan
,
J. A.
, and
Wong
,
M. A.
,
1979
, “
A K-Means Clustering Algorithm
,”
Appl. Stats
,
28
(
1
), pp.
100
108
.10.2307/2346830
36.
Stocki
,
R.
,
2005
, “
A Method to Improve Design Reliability Using Optimal Latin Hypercube Sampling
,”
Comput. Assisted Mech. Eng. Sci.
,
12
(
4
), pp.
393
411
.https://www.researchgate.net/publication/233946639_A_method_to_improve_design_reliability_using_optimal_Latin_hypercube_sampling
37.
Bostanabad
,
R.
,
Kearney
,
T.
,
Tao
,
S.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2018
, “
Leveraging the Nugget Parameter for Efficient Gaussian Process Modeling
,”
Int. J. Numer. Methods Eng.
,
114
(
5
), pp.
501
516
.10.1002/nme.5751
38.
Chodora
,
E. C.
,
2018
, “
Developing a Nonparametric Functional Calibration Framework for Physics-Based Models
,”
Los Alamos National Laboratory (LANL)
, Los Alamos, NM.
39.
Brown
,
D. A.
, and
Atamturktur
,
S.
,
2018
, “
Nonparametric Functional Calibration of Computer Models
,”
Statis. Sin.
,
28
(
2
), pp.
721
742
.10.5705/ss.202015.0344
40.
Farmanesh
,
B.
,
Pourhabib
,
A.
,
Balasundaram
,
B.
, and
Austin
,
B.
,
2021
, “
A Bayesian Framework for Functional Calibration of Expensive Computational Models Through Non-Isometric Matching
,”
IISE Trans.
,
53
(
3
), pp.
352
364
.10.1080/24725854.2020.1774688
You do not currently have access to this content.