Skip Nav Destination
Issues
July 1964
This article was originally published in
Journal of Engineering for Power
ISSN 0022-0825
In this Issue
Research Papers
Some Comments on Reynolds Number
J. Eng. Power. July 1964, 86(3): 225–226.
doi: https://doi.org/10.1115/1.3677583
Topics:
Reynolds number
,
Fluids
,
Dimensional analysis
,
Flow (Dynamics)
,
Physical laws
,
Turbomachinery
A Study on Reynolds Number Effects in Turbomachines
J. Eng. Power. July 1964, 86(3): 227–235.
doi: https://doi.org/10.1115/1.3677584
Topics:
Reynolds number
,
Turbomachinery
,
Pressure
,
Turbines
Reynolds Number Effects in Cascades and Axial Flow Compressors
J. Eng. Power. July 1964, 86(3): 236–242.
doi: https://doi.org/10.1115/1.3677585
Topics:
Axial flow
,
Compressors
,
Reynolds number
,
Cascades (Fluid dynamics)
,
Guide vanes
,
Separation (Technology)
,
Blades
,
Boundary layers
An Experiment With Aspect Ratio as a Means of Extending the Useful Range of a Transonic Inlet Stage of an Axial Flow Compressor
J. Eng. Power. July 1964, 86(3): 243–246.
doi: https://doi.org/10.1115/1.3677586
Topics:
Axial flow
,
Chords (Trusses)
,
Blades
,
Design
,
Reynolds number
,
Rotors
Analysis of Reynolds Number and Scale Effects on Performance of Turbomachinery
J. Eng. Power. July 1964, 86(3): 247–256.
doi: https://doi.org/10.1115/1.3677587
Topics:
Reynolds number
,
Turbomachinery
Low Reynolds-Number Experiments in an Axial-Flow Turbomachine
J. Eng. Power. July 1964, 86(3): 257–295.
doi: https://doi.org/10.1115/1.3677588
Topics:
Axial flow
,
Reynolds number
,
Turbomachinery
,
Flow (Dynamics)
,
Blades
,
Guide vanes
,
Rotors
,
Stators
,
Boundary layers
,
Chords (Trusses)
Study of NASA and NACA Single-Stage Axial Flow Turbine Performance as Related to Reynolds Number and Geometry
J. Eng. Power. July 1964, 86(3): 296–298.
doi: https://doi.org/10.1115/1.3677589
Topics:
Axial flow
,
Geometry
,
NASA
,
Reynolds number
,
Turbines
,
Stators
,
Blades
,
Flow (Dynamics)
,
Rotors
,
Viscosity
Case History: Hydrogen-Damage Experience in a Boiler
J. Eng. Power. July 1964, 86(3): 299–304.
doi: https://doi.org/10.1115/1.3677590
Hydrogen Embrittlement—A Case History
J. Eng. Power. July 1964, 86(3): 305–306.
doi: https://doi.org/10.1115/1.3677591
Topics:
Boilers
,
Failure
,
Fracture (Materials)
,
Hydrogen
,
Hydrogen embrittlement
,
Pressure
,
Steam
,
Temperature
Case Histories of Hydrogen Damage in Boilers
J. Eng. Power. July 1964, 86(3): 307–310.
doi: https://doi.org/10.1115/1.3677592
Hydrogen Damage in Power Boilers
J. Eng. Power. July 1964, 86(3): 311–320.
doi: https://doi.org/10.1115/1.3677593
Embrittlement in One of Four Boilers
J. Eng. Power. July 1964, 86(3): 325–326.
doi: https://doi.org/10.1115/1.3677597
Topics:
Boilers
,
Embrittlement
,
Hydrogen embrittlement
Experiences With Hydrogen Embrittlement in the Consolidated Edison System
J. Eng. Power. July 1964, 86(3): 327–340.
doi: https://doi.org/10.1115/1.3677598
Topics:
Boilers
,
Brittleness
,
Condensers (steam plant)
,
Design
,
Failure
,
Feedwater
,
Hydrogen embrittlement
,
Leakage
,
Oxygen
,
Rivers
Hydrogen Damage in a 1250-Psi Boiler
J. Eng. Power. July 1964, 86(3): 341–343.
doi: https://doi.org/10.1115/1.3677599
Hydrogen Damage to No. 2 Boiler at Armstrong Power Station
J. Eng. Power. July 1964, 86(3): 344–346.
doi: https://doi.org/10.1115/1.3677600
Topics:
Boilers
,
Damage
,
Hydrogen
,
Power stations
,
Chemistry
,
Feedwater
,
Inspection
,
Steam
,
Water
Hydrogen Embrittlement at Linden Generating Station
J. Eng. Power. July 1964, 86(3): 347–349.
doi: https://doi.org/10.1115/1.3677601
Topics:
Hydrogen embrittlement
,
Power stations
,
Boilers
,
Failure
,
Heat
,
Steam
,
Turbines
,
Water
A Case History of Hydrogen Damage
J. Eng. Power. July 1964, 86(3): 350–352.
doi: https://doi.org/10.1115/1.3677602
Removal of Sulfur Oxides From Flue Gas With Alkalized Alumina at Elevated Temperatures
J. Eng. Power. July 1964, 86(3): 353–358.
doi: https://doi.org/10.1115/1.3677603
Topics:
Flue gases
,
Sulfur
,
Temperature
,
Absorption
,
Combustion gases
,
Fly ash
,
Furnaces
,
Heating
,
Hydrogen
,
Natural gas
Prevention of Cyclic Thermal-Stress Cracking in Steam-Turbine Rotors
J. Eng. Power. July 1964, 86(3): 361–367.
doi: https://doi.org/10.1115/1.3677607
Topics:
Cracking (Materials)
,
Fracture (Process)
,
Rotors
,
Steam turbines
,
Thermal stresses
,
Stress
,
Fatigue
,
Geometry
,
High pressure (Physics)
,
Transients (Dynamics)
Flexibility Analysis of Three-Dimensional Pipeline Networks
J. Eng. Power. July 1964, 86(3): 369–385.
doi: https://doi.org/10.1115/1.3677612
Topics:
Pipelines
,
Piping systems
,
Temperature
High Performance Low Pressure Turbine Elements
J. Eng. Power. July 1964, 86(3): 386–391.
doi: https://doi.org/10.1115/1.3677613
Topics:
Pressure
,
Turbines
,
Exhaust systems
,
Design
Discussions
Discussion: “Hydrogen Damage in Power Boilers” (Partridge, Everett P., 1964, ASME J. Eng. Power, 86, pp. 311–320)
J. Eng. Power. July 1964, 86(3): 320–321.
doi: https://doi.org/10.1115/1.3677594
Discussion: “Hydrogen Damage in Power Boilers” (Partridge, Everett P., 1964, ASME J. Eng. Power, 86, pp. 311–320)
J. Eng. Power. July 1964, 86(3): 321–324.
doi: https://doi.org/10.1115/1.3677595
Closure to “Discussions of ‘Hydrogen Damage in Power Boilers’” (1964, ASME J. Eng. Power, 86, pp. 320–324)
J. Eng. Power. July 1964, 86(3): 324.
doi: https://doi.org/10.1115/1.3677596
Discussion: “Removal of Sulfur Oxides From Flue Gas With Alkalized Alumina at Elevated Temperatures” (Bienstock, D., Field, J. H., and Myers, J. G., 1964, ASME J. Eng. Power, 86, pp. 353–358)
J. Eng. Power. July 1964, 86(3): 358–359.
doi: https://doi.org/10.1115/1.3677604
Topics:
Flue gases
,
Sulfur
,
Temperature
Discussion: “Removal of Sulfur Oxides From Flue Gas With Alkalized Alumina at Elevated Temperatures” (Bienstock, D., Field, J. H., and Myers, J. G., 1964, ASME J. Eng. Power, 86, pp. 353–358)
J. Eng. Power. July 1964, 86(3): 359–360.
doi: https://doi.org/10.1115/1.3677605
Topics:
Flue gases
,
Sulfur
,
Temperature
Closure to “Discussions of ‘Removal of Sulfur Oxides From Flue Gas With Alkalized Alumina at Elevated Temperatures’” (1964, ASME J. Eng. Power, 86, pp. 358–360)
J. Eng. Power. July 1964, 86(3): 360.
doi: https://doi.org/10.1115/1.3677606
Topics:
Flue gases
,
Sulfur
Discussion: “Prevention of Cyclic Thermal-Stress Cracking in Steam-Turbine Rotors” (Berry, W. R., and Johnsson, Ivar, 1964, ASME J. Eng. Power, 86, pp. 361–367)
J. Eng. Power. July 1964, 86(3): 367.
doi: https://doi.org/10.1115/1.3677608
Topics:
Cracking (Materials)
,
Fracture (Process)
,
Rotors
,
Steam turbines
,
Thermal stresses
Discussion: “Prevention of Cyclic Thermal-Stress Cracking in Steam-Turbine Rotors” (Berry, W. R., and Johnsson, Ivar, 1964, ASME J. Eng. Power, 86, pp. 361–367)
J. Eng. Power. July 1964, 86(3): 367–368.
doi: https://doi.org/10.1115/1.3677609
Topics:
Cracking (Materials)
,
Fracture (Process)
,
Rotors
,
Steam turbines
,
Thermal stresses
Discussion: “Prevention of Cyclic Thermal-Stress Cracking in Steam-Turbine Rotors” (Berry, W. R., and Johnsson, Ivar, 1964, ASME J. Eng. Power, 86, pp. 361–367)
J. Eng. Power. July 1964, 86(3): 368.
doi: https://doi.org/10.1115/1.3677610
Topics:
Cracking (Materials)
,
Fracture (Process)
,
Rotors
,
Steam turbines
,
Thermal stresses
Closure to “Discussions of ‘Prevention of Cyclic Thermal-Stress Cracking in Steam-Turbine Rotors’” (1964, ASME J. Eng. Power, 86, pp. 367–368)
J. Eng. Power. July 1964, 86(3): 368.
doi: https://doi.org/10.1115/1.3677611
Topics:
Cracking (Materials)
,
Fracture (Process)
,
Steam turbines
,
Thermal stresses
Discussion: “High Performance Low Pressure Turbine Elements” (Brown, R. O., Heinze, F. J., and Davids, J., 1964, ASME J. Eng. Power, 86, pp. 386–391)
J. Eng. Power. July 1964, 86(3): 391–392.
doi: https://doi.org/10.1115/1.3677616
Closure to “Discussions of ‘High Performance Low Pressure Turbine Elements’” (1964, ASME J. Eng. Power, 86, pp. 391–392)
J. Eng. Power. July 1964, 86(3): 392.
doi: https://doi.org/10.1115/1.3677618
Email alerts
RSS Feeds
Foreign Object Damage of Environmental Barrier Coatings Subjected to CMAS Attack
J. Eng. Gas Turbines Power
Generative deep learning on images of thermo-mechanical simulation results
J. Eng. Gas Turbines Power
High Temperature Industrial-Scale CO2 Heat Pumps: Thermodynamic Analysis and Pilot-Scale Testing
J. Eng. Gas Turbines Power