This paper is concerned with the two-dimensional supersonic flow of a thick turbulent boundary layer over a train of relatively small wave-like protuberances. The flow conditions and the geometry are such that there exists a strong interaction between the viscous and inviscid flow. Here the interacting boundary layer equations are solved numerically using a time-like relaxation method with turbulence effects represented by the inclusion of the eddy viscosity model of Cebeci and Smith. Results are presented for flow over a train of up to six waves for Mach numbers of 2.5 and 3.5, Reynolds numbers of 10 and 32 × 106/meter, and wall temperature ratios Tw/T0 of 0.4 and 0.8. Limited comparisons with independent experimental and analytical results are also given.

This content is only available via PDF.
You do not currently have access to this content.