Heat-transfer augmentation by straight grid spacers in rod bundles is studied for single-phase flow and for post-critical heat flux dispersed flow. The heat transfer effect of swirling grid spacers in single-phase flow is also examined. Governing heat-transfer mechanisms are analyzed, and predictive formulations are established. For single-phase flow, the local heat transfer at a straight spacer and at its upstream or downstream locations are treated separately. The effect of local velocity increasing near swirling spacer is considered. For post critical heat flux (CHF) dispersed flow, the heat transfer by thermal radiation, fin cooling, and vapor convection near the spacer are calculated. The predictions are compared with experimental data with satisfactory agreement.

This content is only available via PDF.
You do not currently have access to this content.