Experiments have been performed to study the rate of internal radiative heating on the natural convective motion in a vertical rectangular enclosure irradiated from the side. A Mach–Zehnder interferometer has been used to determine the temperature field, and a fluorescing dye injection technique was employed to illustrate the flow structure with water as the working fluid. A theoretical model is developed for predicting the absorption of thermal radiation and the subsequent buoyancy-driven flow. Predictions based on spectral calculations for the radiation flux divergence agree well with the experimental data.

This content is only available via PDF.
You do not currently have access to this content.