A procedure to obtain accurate solutions for many transient conduction problems in complex geometries using a Galerkin-based integral (GBI) method is presented. The nonhomogeneous boundary conditions are accommodated by the Green’s function solution technique. A Green’s function obtained by the GBI method exhibits excellent large-time accuracy. It is shown that the time partitioning of the Green’s function yields accurate small-time and large-time solutions. In one example, a hollow cylinder with convective inner surface and prescribed heat flux at the outer surface is considered. Only a few terms for both large-time and small-time solutions are sufficient to produce results with excellent accuracy. The methodology used for homogeneous solids is modified for application to complex heterogeneous solids.

This content is only available via PDF.
You do not currently have access to this content.