The combined effect of free-stream turbulence and unsteady wakes on turbine blade surface heat transfer was studied. The experiments used a five-blade linear cascade in a low-speed wind tunnel facility. A turbulence grid and spoked-wheel type wake generator produced the free-stream turbulence and unsteady wakes. The mainstream Reynolds numbers based on the cascade inlet mean velocity and blade chord length were 100,000, 200,000, and 300,000. Results show that the blade time-averaged heat transfer coefficient depends on the mean turbulence intensity, regardless of whether this mean turbulence intensity is from unsteady wake only, turbulence grid only, or a wake and grid combination. The higher mean turbulence promotes earlier boundary layer transition and causes much higher heat transfer coefficients on the suction surface. It also significantly enhances the heat transfer coefficients on the pressure surface. The unsteady wake greatly affects blade heat transfer for low oncoming free-stream turbulence; however, the wake effect diminishes for high oncoming turbulence. The free-stream turbulence also strongly affects blade heat transfer for a low wake passing frequency, but the oncoming turbulence effect diminishes for a high unsteady wake condition.

1.
Abhari
R. S.
,
Guenette
G. R.
,
Epstein
A. H.
, and
Giles
M. B.
,
1992
, “
Comparison of Time-Resolved Measurements and Numerical Calculations
,”
ASME Journal of Turbomachinery
, Vol.
114
, pp.
818
827
.
2.
Ashworth
D. A.
,
LaGraff
J. E.
,
Schultz
D. L.
, and
Grindrod
K. J.
,
1985
, “
Unsteady Aerodynamic and Heat Transfer Processes in a Transonic Turbine Stage
,”
ASME Journal of Engineering for Gas Turbines and Power
, Vol.
107
, pp.
1022
1030
.
3.
Blair
M. F.
,
1983
, “
Influence of Free-Stream Turbulence on Turbulence Boundary Layer Heat Transfer and Mean Profile Development: Part I—Experimental Data; Part II—Analysis of Results
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
105
, pp.
33
47
.
4.
Blair
M. F.
,
Dring
R. P.
, and
Joslyn
H. D.
,
1989
, “
The Effects of Turbulence and Stator/Rotor Interactions on Turbine Heat Transfer: Part I—Design Operating Conditions; Part II—Effects of Reynolds Number and Incidence
,”
ASME Journal of Turbomachinery
, Vol.
111
, pp.
87
103
.
5.
Blair
M. F.
,
1994
, “
An Experimental Study of Heat Transfer in a Large-Scale Turbine Rotor Passage
,”
ASME Journal of Turbomachinery
, Vol.
116
, pp.
1
13
.
6.
Brown, A., and Martin, B. W., 1979, “Heat Transfer to Turbine Blades, With Special Reference to the Effects of Mainstream Turbulence,” ASME Paper No. 79-GT-26.
7.
Brown
A.
, and
Martin
B. W.
,
1982
, “
Flow Transition Phenomena and Heat Transfer Over the Pressure Surface of Gas Turbine Blades
,”
ASME Journal of Engineering for Power
, Vol.
104
, pp.
360
367
.
8.
Doorly
D. J.
, and
Oldfield
M. L. G.
,
1985
, “
Simulation of the Effects of Shock-Waves Passing on a Turbine Rotor Blade
,”
ASME Journal of Engineering for Gas Turbines and Power
, Vol.
107
, pp.
998
1006
.
9.
Doorly
D. J.
,
1988
, “
Modeling the Unsteady Flow in a Turbine Rotor Passage
,”
ASME Journal of Turbomachinery
, Vol.
110
, pp.
27
37
.
10.
Dullenkopf
K.
,
Schulz
A.
, and
Wittig
S.
,
1991
, “
The Effects of Incident Wake Conditions on the Mean Heat Transfer of an Airfoil
,”
ASME Journal of Turbomachinery
, Vol.
113
, pp.
412
418
.
11.
Dullenkopf
K.
, and
Mayle
R. E.
,
1994
, “
The Effects of Incident Turbulence and Moving Wakes on Laminar Heat Transfer in Gas Turbines
,”
ASME Journal of Turbomachinery
, Vol.
116
, pp.
23
28
.
12.
Dunn
M. G.
,
1986
, “
Heat Flux Measurements for the Rotor of a Full-Stage Turbine: Part I—Time-Averaged Results
,”
ASME Journal of Turbomachinery
, Vol.
108
, pp.
90
97
.
13.
Dunn
M. G.
,
George
W. K.
,
Rae
W. J.
,
Woodward
S. H.
,
Moller
J. C.
, and
Seymour
J. P.
,
1986
, “
Heat Flux Measurements for the Rotor of a Full-State Turbine: Part II—Description of Analysis Technique and Typical Time-Resolved Measurements
,”
ASME Journal of Turbomachinery
, Vol.
108
, pp.
98
107
.
14.
Dunn
M. G.
,
Seymour
P. J.
,
Woodward
S. H.
,
George
W. K.
, and
Chupp
R. E.
,
1989
, “
Phase-Resolved Heat Flux Measurements on the Blade of a Full-Scale Rotating Turbine
,”
ASME Journal of Turbomachinery
, Vol.
111
, pp.
8
19
.
15.
Dunn
M. G.
,
Kim
J.
,
Civinskas
K. C.
, and
Boyle
R. J.
,
1994
, “
Time-Averaged Heat Transfer and Pressure Measurements and Comparison With Prediction for a Two-Stage Turbine
,”
ASME Journal of Turbomachinery
, Vol.
116
, pp.
14
22
.
16.
Gaugler, R. E., 1981, “Some Modifications to, and Operational Experiments With, the Two-Dimensional, Finite-Difference Boundary-Layer Code, STAN 5,” NASA TM-81631.
17.
Han
J. C.
,
Zhang
L.
, and
Ou
S.
,
1993
, “
Influence of Unsteady Wake on Heat Transfer Coefficients From a Gas Turbine Blade
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
115
, pp.
904
911
.
18.
Kline
S. J.
, and
McClintock
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mechanical Engineering
, Vol.
75
, Jan., pp.
3
8
.
19.
Liu, X., and Rodi, W., 1992, “Measurements of Unsteady Flow and Heat Transfer in a Linear Turbine Cascade,” ASME Paper No. 92-GT-323.
20.
Lowery
G. W.
, and
Vachon
R. I.
,
1975
, “
The Effect of Turbulence on Heat Transfer From Heated Cylinders
,”
International Journal of Heat and Mass Transfer
, Vol.
18
, pp.
1229
1242
.
21.
Maciejewski
P. K.
, and
Moffat
R. J.
,
1992
, “
Heat Transfer With Very High Free-Stream Turbulence: Part I—Experimental Data; Part II—Analysis of Results
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
114
, pp.
827
839
.
22.
Mayle
R. E.
, and
Dullenkopf
K.
,
1990
, “
A Theory for Wake Induced Transition
,”
ASME Journal of Turbomachinery
, Vol.
112
, pp.
188
195
.
23.
Mayle
R. E.
, and
Dullenkopf
K.
,
1991
, “
More on the Turbulent-Strip Theory for Wake-Induced Transition
,”
ASME Journal of Turbomachinery
, Vol.
113
, pp.
428
432
.
24.
Mayle
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME Journal of Turbomachinery
, Vol.
113
, pp.
509
537
.
25.
Mehendale
A. B.
,
Han
J. C.
, and
Ou
S.
,
1991
, “
Influence of High Mainstream Turbulence on Leading Edge Heat Transfer
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
113
, pp.
843
850
.
26.
O’Brien
J. E.
, and
Capp
S. P.
,
1989
, “
Two-Component Phase-Averaged Turbulence Statistics Downstream of a Rotating Spoked-Wheel Wake Generator
,”
ASME Journal of Turbomachinery
, Vol.
111
, pp.
475
482
.
27.
O’Brien
J. E.
,
1990
, “
Effects of Wake Passing on Stagnation Region Heat Transfer
,”
ASME Journal of Turbomachinery
, Vol.
112
, pp.
522
530
.
28.
Pfeil
H.
,
Herbst
R.
, and
Schroeder
T.
,
1983
, “
Investigation of the Laminar-Turbulent Transition of Boundary Layers Disturbed by Wakes
,”
ASME Journal of Engineering for Power
, Vol.
105
, pp.
130
137
.
29.
Traci
R. M.
, and
Wilcox
D. C.
,
1975
, “
Free-Stream Turbulence Effects on Stagnation Point Heat Transfer
,”
AIAA Journal
, Vol.
13
, No.
7
, pp.
890
896
.
30.
Wittig
S.
,
Dullenkopf
K.
,
Schulz
A.
, and
Hestermann
R.
,
1987
, “
Laser-Doppler Studies of the Wake-Effected Flow Field in a Turbine Cascade
,”
ASME Journal of Turbomachinery
, Vol.
109
, pp.
170
176
.
31.
Wittig, S., Schulz, A., Dullenkopf, K., and Fairbanks, J., 1988, “Effects of Free-Stream Turbulence and Wake Characteristics on The Heat Transfer Along a Cooled Gas Turbine Blade,” ASME Paper No. 88-GT-179.
32.
Young
C. D.
,
Han
J. C.
,
Huang
Y.
, and
Rivir
R. B.
,
1992
, “
Influence of Jet-Grid Turbulence on Flat Plate Turbulent Boundary Layer Flow and Heat Transfer
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
114
, pp.
65
72
.
33.
Zhang, L., 1993, “Influence of Mainstream Turbulence and Unsteady Wake on Turbine Blade Heat Transfer,” Ph.D. Dissertation, Texas A&M University, May.
34.
Zhang
L.
, and
Han
J. C.
,
1994
, “
Influence of Mainstream Turbulence on Heat Transfer Coefficients From a Gas Turbine Blade
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
116
, pp.
896
903
.
This content is only available via PDF.
You do not currently have access to this content.