Thermal radiation absorption in metallic particles is an important phenomenon in many contemporary laser-processing techniques, including laser cladding of coating materials and laser cleaning of particulate contaminations. In this work, the Drude free-electron theory and electromagnetic wave theory are utilized to characterize the internal absorption of CO2 laser radiation in aluminum, chromium, and nickel particles. The results show that metallic particles have unique radiation properties. Radiation absorption in large particles occurs only in a very narrow region of the front particle surface, which results in inefficient radiation absorption. On the other hand, micron and submicron particles can absorb radiation very efficiently, due to the strong diffraction effect at the particle surface. For extremely small particles (e.g., nanometer particles), radiation absorption becomes less efficient. The particle absorption efficiency is found to increase with temperature, and this temperature dependence can be determined from those of flat metal surfaces at the normal incidence.

1.
Abramowitz, M., and Stegun, I. A., 1970, Handbook of Mathematical Functions, Dover, New York.
2.
Arnold
G. S.
,
1984
, “
Absorptivity of Several Metals at 10.6 μm: Empirical Expressions for the Temperature Dependence Computed From Drude’s Theory
,”
Applied Optics
, Vol.
23
, pp.
1434
1436
.
3.
Atamert
S.
, and
Bhadeshia
H. K. D. H.
,
1989
, “
Comparison of the Microstructures and Abrasive Wear Properties of Stellite Hardfacing Alloys Deposited by Arc Welding and Laser Cladding
,”
Metallurgical Transactions A
, Vol.
20
, pp.
1037
1054
.
4.
Avner, A. H., 1964, Introduction to Physical Metallurgy, McGraw-Hill, New York.
5.
Bohren, C. F., and Huffman, D. R., 1983, Absorption and Scattering of Light by Small Particles, Wiley, New York.
6.
Born, M., and Wolf, E., 1989, Principles of Optics, 6th ed., Pergamon Press, New York.
7.
Brewster, M. Q., 1992, Thermal Radiative Transfer and Properties, Wiley, New York.
8.
Brewster
M. Q.
, and
Tien
C. L.
,
1982
, “
Radiative Transfer in Packed and Fluidized Beds: Dependent vs. Independent Scattering
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
104
, pp.
573
579
.
9.
Bruckner
M.
,
Schafer
J. H.
,
Schiffer
C.
, and
Uhlenbusch
J.
,
1991
, “
Measurements of the Optical Constants of Solid and Molten Gold and Tin at λ = 10.6 μm
,”
J. Applied Physics
, Vol.
70
, pp.
1642
1647
.
10.
Figlarz, M., Ducamp-Sanguesa, C., Fievet, F., and Lagier, J-P., 1992, “Preparation and Characterization of Monodisperse Co, Ni, Cu, and Ag Metal Particles of Uniform Shape,” in: Advances in Powder Metallurgy and Particulate Materials, Vol. 1, J. M. Capus and R. M. German, eds., American Powder Metallurgy Institute, Princeton, NJ.
11.
Hauffe, K., 1965, Oxidation of Metals, Plenum Press, New York.
12.
Hausner, H. H., and Mal, M. K., 1982, Handbook of Powder Metallurgy, Chemical Publishing Co., New York.
13.
Hoadley
A. F. A.
, and
Rappaz
M.
,
1992
, “
A Thermal Model of Laser Cladding by Powder Injection
,”
Metallurgical Transactions B
, Vol.
23
, pp.
631
642
.
14.
Kittel, C., 1986, Introduction to Solid State Physics, 6th ed., Wiley, New York.
15.
Komvopoulos
K.
, and
Nagarathnam
K.
,
1990
, “
Processing and Characterization of Laser-Cladded Coating Materials
,”
ASME Journal of Engineering Materials and Technology
, Vol.
112
, pp.
131
143
.
16.
Kubaschewski, O., and Hopkins, B. E., 1953, Oxidation of Metals and Alloys, Academic Press, New York.
17.
Lide, D. R., ed., 1992, CRC Handbook of Chemistry and Physics, 73rd ed., CRC Press, Boca Raton, FL, Section 12, pp. 34–35.
18.
Mackowski
D. W.
,
1989
, “
Photophoresis of Aerosol Particles in the Free Molecular and Slip-Flow Regimes
,”
Int. J. Heat Mass Transfer
, Vol.
32
, pp.
843
854
.
19.
Mazumder, J., Sircar, S., Ribaudo, C., and Kar, A., 1992, “Laser Cladding of Nonequilibrium Metallic Alloys,” in: Thermomechanical Aspects of Manufacturing and Materials Processing, R. K. Shah et al., eds., Hemisphere Publishing Corp., New York, pp. 319–335.
20.
Oberlander
B. C.
, and
Lugscheider
E.
,
1992
, “
Comparison of Properties of Coatings Produced by Laser Cladding and Conventional Methods
,”
Materials Science and Technology
, Vol.
8
, pp.
657
665
.
21.
Ordal
M. A.
,
Bell
R. J.
,
Alexander
R. W.
,
Long
L. L.
, and
Querry
M. R.
,
1985
, “
Optical Properties of Fourteen Metals in the Infrared and Far Infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pal, Pt, Ag, Ti, V, and W
,”
Applied Optics
, Vol.
24
, pp.
4493
4499
.
22.
Prokhorov, A. M., and Konov, V. I., 1990, Laser Heating of Metals, Adam Hilger, New York.
23.
Pustovalov
V. K.
, and
Bobuchenko
D. S.
,
1993
, “
Thermal Processes in Gas-Powder Laser Cladding of Metal Materials
,”
Int. J. Heat Mass Transfer
, Vol.
36
, pp.
2449
2456
.
24.
Shiles
E.
,
Sasaki
T.
,
Inokuti
M.
, and
Smith
D. Y.
,
1980
, “
Self-Consistency and Sum-Rule Tests in the Kramers-Kroning Analysis of Optical Data: Applications to Aluminum
,”
Physical Review B
, Vol.
22
, pp.
1612
1628
.
25.
Tuntomo
A.
,
Tien
C. L.
, and
Park
S. H.
,
1991
, “
Internal Distribution of Radiant Absorption in a Spherical Particle
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
113
, pp.
407
412
.
26.
Ujihara
K.
,
1972
, “
Reflectivity of Metals at High Temperatures
,”
J. Applied Physics
, Vol.
43
, pp.
2376
2383
.
27.
Weaver, J. H., 1992, “Optical Properties of Metals,” in: CRC Handbook of Chemistry and Physics, 73rd ed., D. R. Lide, ed., CRC Press, Boca Raton, FL, Section 12, pp. 111–126.
28.
Wiscombe, W. J., 1979, “Mie Scattering Calculations: Advances in Technique and Fast, Vector-Speed Computer Codes,” NCAR Technical Report #NCAR/TN-140+STR, NCAR, Boulder, CO.
This content is only available via PDF.
You do not currently have access to this content.