A physics-based model is developed to study the gravitational (convection), thermoelectric (Peltier, Seebeck, Joule, and Thomson) and magnetohydrodynamic (Lorentz force) effects on solidification phenomena. A scaling analysis is carried out to examine the importance and contributions of various governing parameters. Directional solidification with Peltier Interface Demarcation under varying gravitational conditions is simulated for the Bridgman–Stockbarger configuration. The predicted interface location and movement during current pulsing are studied and the microstructures corresponding to different current polarities are analyzed based on Jackson–Hunt theory.
1.
Brown, R. A., 1986, “Interaction between convection, segregation and interface morphology,” in: Advanced Crystal Growth, P. M. Dryburgh, B. Cockayne, and K. G. Barraclough, eds., Prentice-Hall, Englewood Cliffs, NJ, pp. 3–94.
2.
Brush
L. W.
Coriell
S. R.
McFadden
G. B.
1990
, “Directional solidification of a planar interface in the presence of a time-dependent electric current
,” Journal of Crystal Growth
, Vol. 102
, pp. 725
–742
.3.
Favier
J. J.
Garandet
J. P.
Rouzaud
A.
Camel
D.
1994
, “Mass transport phenomena during solidification in micro-gravity: Preliminary results of the first Mephisto flight experiment
,” Journal of Crystal Growth
, Vol. 140
, pp. 237
–243
.4.
Holmes
D. E.
Gatos
H. C.
1978
, “Application of interface demarcation to multiphase system: In Sb-Sb Eutectic
,” Journal of the Electrochemical Society
, Vol. 125
, pp. 1873
–1875
.5.
Li
Q.
Nguyen Thi
H.
Billia
B.
1996
, “Quantitative analysis of the influence of Peltier interface demarcation on directional solidification
,” Journal of Crystal Growth
, Vol. 167
, pp. 277
–284
.6.
Lichtensteiger
M.
Witt
A. F.
Gatos
H. C.
1971
, “Modulation of dopant segregation by electric currents in Czochralski-type crystal growth
,” Journal of the Electrochemical Society
, Vol. 118
, pp. 1013
–1015
.7.
Panofsky, W. K. H., and Phillips, M., 1956, Classical Electricity and Magnetism, Addison-Wesley, Reading, MA, p. 115.
8.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, DC.
9.
Pirich, R. G., and Larson, D. J., Jr., 1982, in: Materials Processing in Reduced Gravity Environment of Space, Rindone, G. E., ed., North-Holland, New York, p. 253.
10.
Quenisset
J. M.
Naslain
R.
1981
, “Effect of forced convection on eutectic growth
,” Journal of Crystal Growth
, Vol. 54
, p. 465
465
.11.
Schaefer
R.
Glicksman
M.
1968
, “Measurement of atomic kinetics of solidification using Peltier heating and cooling—I. Theory
,” Acta Metallurgica
, Vol. 16
, pp. 1009
–1018
.12.
Shercliff
J. A.
1979
, “Thermoelectric magnetohydrodynamic
,” Journal of Fluid Mechanics
, Vol. 91
, pp. 231
–251
.13.
Silberstein, R. P., and Larson, D. J., Jr., 1987, “Spatial profile of thermoelectric effects during Peltier pulsing in Bi and Bi/MnBi eutectic,” Materials Research Society, Symposium Vol. 87, pp. 29–138.
14.
Wang
C. A.
Witt
A. F.
Carruthers
J. R.
1984
, “Analysis of crystal growth characteristics in a conventional vertical Bridgman configuration
,” Journal of Crystal Growth
, Vol. 66
, pp. 299
–308
.15.
Zhang
H.
Moallemi
M. K.
1995
, “A multizone adaptive grid generation technique for simulation of moving and free boundary problems
,” Numerical Heat Transfer
, Vol. B27
, pp. 255
–276
.16.
Zhang
H.
Prasad
V.
Moallemi
M. K.
1996
, “A numerical algorithm using multi-zone grid generation for multiphase transport processes with moving and free boundaries
,” Numerical Heat Transfer
, Vol. B29
, pp. 399
–421
.17.
Zhang, H., Zheng, L. L., Prasad, V., and Larson, Jr., D. J., 1997, “An advanced numerical scheme for dynamic simulation of Bridgman crystal growth,” Proc. 32nd National Heat Transfer Conference, ASME HTD-Vol. 347, pp. 281–291.
18.
Zheng
L. L.
Larson
D. J.
1997
a, “Thermoelectric effects on interface demarcation and directional solidification in bismuth
,” Journal of Crystal Growth
, Vol. 180
, pp. 293
–304
.19.
Zheng, L. L., and Larson, D. J., Jr., 1997b, “Experimental and numerical solidification of thermal and compositional transport during directional solidification in Bridgman Stockbarger system,” Journal of Crystal Growth, in preparation.
This content is only available via PDF.
Copyright © 1998
by The American Society of Mechanical Engineers
You do not currently have access to this content.