An experimental study has been conducted to investigate the effects of grain transport on the columnar to equiaxed transition (CET) in dendritic alloy solidification. Using the aqueous ammonium chloride solution as a transparent model alloy, experiments were performed in a vertical test cell with cooling from the top, resulting in unidirectional columnar crystals growing downwards. Ahead of the columnar front, equiaxed nuclei were observed to originate mostly by fragmentation of the columnar dendrites in the presence of a thermally driven flow in the melt beneath the columnar mushy zone. Being heavier than the liquid, these fragments fall into the bulk melt where they may grow or remelt. The survived equiaxed crystals finally settle towards the floor and pile up to form an equiaxed bed. The CET occurs when the bottom equiaxed packed bed rises and eventually obstructs the columnar mushy zone growing from the upper surface. Therefore, the CET in the present configuration was predominantly controlled by the sedimentation of equiaxed crystals. A parametric study by varying initial concentration, cooling rate, and superheat was performed.

1.
Beckermann
C.
, and
Viskanta
R.
,
1988
, “
Double-diffusive Convection during Dendritic Solidification of a Binary Mixture
,”
PhysicoChemical Hydrodynamics
, Vol.
10
, No.
2
, pp.
195
213
.
2.
Beckermann, C., Feller, R. J., Irwin, T. R., Muller-Spath, H., and Wang, C. Y., 1994, “Visualization of Sedimentation and Thermo-Solutal Convection During Equiaxed Alloy Solidification,” AIAA Paper No. 94-0570, AIAA, Washington DC.
3.
Beckermann
C.
, and
Wang
C. Y.
,
1996
, “
Equiaxed Dendritic Solidification with Convection, Part III: Comparisons with NH4CI-H2O Experiments
,”
Metall Trans. A
, Vol.
27A
, pp.
2784
2795
.
4.
Chen
C. F.
, and
Chen
F.
,
1991
, “
Experimental Study of Directional Solidification of Aqueous Ammonium Chloride Solution
,”
J. Fluid Mech
, Vol.
227
, pp.
567
586
.
5.
Flood, S. C., and Hunt, I. D., 1988, “Columnar to Equiaxed Transition,” Metals Handbook, 9th Ed., Vol. 15, Casting, Metals Park, OH, pp. 130–141.
6.
Garimella
S. V.
,
McNulty
J. P.
, and
Schlitz
L. Z.
,
1995
, “
Formation and Suppression of Channels during Upward Solidification of a Binary Mixture
,”
Metall. Trans. A
, Vol.
26A
, pp.
971
981
.
7.
Griffith
W. D.
, and
McCartney
D. G.
,
1993
, “
Macrostructural Development in Aluminum Alloys Solidified Vertically Downwards
,”
Mater. Sci. and Eng. A
, Vol.
AI73
, pp.
123
127
.
8.
Han
Q.
, and
Hellawell
A.
,
1997
, “
Primary Particle Melting Rates and Equiaxed Grain Nucleation
,”
Metall. Trans. B
, Vol.
28B
, pp.
169
173
.
9.
Hellawell
A.
,
Saragin
I. R.
, and
Steube
R. S.
,
1993
, “
Channel Convection in Partly Solidified Systems
,”
Phil. Trans. R. Soc., Lond.
, Vol.
A345
, pp.
507
544
.
10.
Hollands
K. G. T.
,
Raithby
G. D.
, and
Konicek
L.
,
1975
, “
Correlation Equations for Free Convection Heat Transfer in Horizontal Layers of Air and Water
,”
Int. J. Heat Mass Transfer
, Vol.
18
, pp.
879
884
.
11.
Jackson
K. A.
,
Hunt
J. D.
,
Uhlemann
D. R.
, and
Seward
T. P.
,
1966
, “
On the Origin of the Equiaxed Zone in Castings
,”
Trans. AIME
, Vol.
236
, pp.
149
158
.
12.
Jang
J.
, and
Hellawell
A.
,
1991
, “
Use of NH4Cl-H2O Analogue Castings to Model Aspects of Continuous Casting
,”
Ironmaking and Steelmaking
, Vol.
18
, No.
4
, pp.
275
283
.
13.
Kirkpatrick
A. T.
, and
Bonn
M.
,
1986
, “
An Experimental Investigation of Mixed Cavity Natural Convection in the High Rayleigh Number Regime
,”
Int. J. Heat Mass Transfer
, Vol.
29
, pp.
69
82
.
14.
Magirl
C. S.
, and
Incropera
F. P.
,
1993
, “
Flow and Morphological Conditions Associated with Unidirectional Solidification of Aqueous Ammonium Chloride
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
115
, pp.
1036
1043
.
15.
Mahapatra
R. B.
, and
Weinberg
F.
,
1987
, “
The Columnar to Equiaxed Transition in Tin-Lead Alloys
,”
Metall. Trans. B
, Vol.
18B
, pp.
425
432
.
16.
McCartney
D. G.
, and
Ahmady
S. M.
,
1994
, “
Solidification Macrostructures and Macrosegregation in Aluminum Alloys Cooled from Above
,”
Metall. Trans. A.
, Vol.
25A
, pp.
1097
1102
.
17.
McCay
T. D.
,
McCay
M. H.
,
Lowry
S. A.
, and
Smith
L. M.
,
1989
, “
Convective Instabilities During Directional Solidification
,”
J. Thermophysics
, Vol.
3
, No.
3
, pp.
345
350
.
18.
Paradies
C. J.
,
Smith
R. N.
, and
Glicksman
M. E.
,
1997
, “
The Influence of Convection during Solidification on Fragmentation of the Mushy Zone of a Model Alloy
,”
Metall. Mater. Trans. A
, Vol.
28A
, pp.
875
883
.
19.
Rappaz
M.
, and
Thevoz
P. H.
,
1987
, “
Solute Diffusion Model for Equiaxed Dendritic Growth
,”
Acta Metall.
, Vol.
35
, No.
7
, pp.
1487
1497
.
20.
Sparrow
E. M.
,
Husar
R. B.
, and
Goldstein
R. J.
,
1970
, “
Observations and Other Characteristics of Thermals
,”
J. Fluid Mech.
, Vol.
41
, pp.
793
800
.
21.
Wang
C. Y.
, and
Beckermann
C.
,
1994
, “
Prediction of Columnar to Equiaxed Transition during Diffusion-Controlled Dendritic Alloy Solidification
,”
Metall. Mater. Trans. A
, Vol.
25A
, pp.
1081
1093
.
22.
Wang
C. Y.
, and
Beckermann
C.
,
1996
, “
Equiaxed Dendritic Solidification with Convection: Part I. Multi-Phase/Multi-Scale Modeling
,”
Metall. Mater. Trans. A
, Vol.
27A
, pp.
2754
2764
.
23.
Ziv.
I.
, and
Weinberg
F.
,
1989
, “
The Columnar-to-Equiaxed Transition in Al 3 Pet Cu
,”
Metall. Trans. B
, Vol.
20B
, pp.
731
734
.
This content is only available via PDF.
You do not currently have access to this content.