Nonintrusive measurements of the optical properties of soot at visible wavelengths (351.2–800.0 nm) were completed for soot in the overfire region of large (2–7 kW) buoyant turbulent diffusion flames burning in still air at standard temperature and pressure, where soot properties are independent of position and characteristic flame residence time for a particular fuel. Soot from flames fueled with gaseous (acetylene, ethylene, propylene, and butadiene) and liquid (benzene, cyclohexane, toluene, and n-heptane) hydrocarbon fuels were studied. Scattering and extinction measurements were interpreted to find soot optical properties using the Rayleigh-Debye-Gans/polydisperse-fractal-aggregate theory after establishing that this theory provided good predictions of scattering patterns over the present test range. Effects of fuel type on soot optical properties were comparable to experimental uncertainties. Dimensionless extinction coefficients were relatively independent of wavelength for wavelengths of 400–800 nm and yielded a mean value of 8.4 in good agreement with earlier measurements. Present measurements of the refractive index function for absorption, Em, were in good agreement with earlier independent measurements of Dalzell and Sarofim and Stagg and Charalampopoulos. Present values of the refractive index function for scattering, Fm, however, only agreed with these earlier measurements for wavelengths of 400–550 nm but otherwise increased with increasing wavelength more rapidly than the rest. The comparison between present and earlier measurements of the real and imaginary parts of the complex refractive index was similar to Em and Fm.[S0022-1481(00)02203-9]

1.
Faeth
,
G. M.
, and
Ko¨ylu¨
,
U¨. O¨.
,
1995
, “
Soot Morphology and Optical Properties in Nonpremixed Turbulent Flame Environments
,”
Combust. Sci. Technol.
,
108
, pp.
207
229
.
2.
Charalampopoulis
,
T. T.
,
1992
, “
Morphology and Dynamics of Agglomerated Particulates in Combustion Systems Using Light Scattering Techniques
,”
Prog. Energy Combust. Sci.
,
18
, pp.
13
45
.
3.
Jullien, R., and Botet, R., 1987, Aggregation and Fractal Aggregates, World Scientific, Singapore, pp. 45–60.
4.
Ko¨ylu¨
,
U¨. O¨.
, and
Faeth
,
G. M.
,
1993
, “
Radiative Properties of Flame-Generated Soot
,”
ASME J. Heat Transfer
,
111
, pp.
409
417
.
5.
Tien
,
C. L.
, and
Lee
,
S. C.
,
1982
, “
Flame Radiation
,”
Prog. Energy Combust. Sci.
,
8
, pp.
41
59
.
6.
Viskanta
,
R.
, and
Mengu¨c
,
M. P.
,
1987
, “
Radiation Heat Transfer in Combustion Systems
,”
Prog. Energy Combust. Sci.
,
13
, pp.
97
160
.
7.
Batten
,
C. E.
,
1985
, “
Spectral Optical Constants of Soots From Polarized Angular Reflectance Measurements
,”
Appl. Opt.
,
24
, pp.
1193
1199
.
8.
Dalzell
,
W. H.
, and
Sarofim
,
A. F.
,
1969
, “
Optical Constants of Soot and Their Application to Heat Flux Calculations
,”
ASME J. Heat Transfer
,
91
, pp.
100
104
.
9.
Felske
,
J. D.
,
Charalampopoulos
,
T. T.
, and
Hura
,
H.
,
1984
, “
Determination of the Refractive Indices of Soot Particles from the Reflectivities of Compressed Soot Pellets
,”
Combust. Sci. Technol.
,
37
, pp.
263
284
.
10.
Chang
,
H. Y.
, and
Charalampopoulos
,
T. T.
,
1990
, “
Determination of the Wavelength Dependence of Refractive Indices of Flame Soot
,”
Proc. R. Soc. London, Ser. A
,
430
, pp.
577
591
.
11.
Lee, S. C., and Tien, C. L., 1980, “Optical Constants of Soot in Hydrocarbon Flames,” Eighteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1159–1166.
12.
Vaglieco
,
B. M.
,
Beretta
,
F.
, and
D’Alessio
,
A.
,
1990
, “
In Situ Evaluation of the Soot Refractive Index in the UV-Visible from the Measurements of Scattering and Extinction Coefficients in Rich Flames
,”
Combust. Flame
,
79
, pp.
259
271
.
13.
Dobbins
,
R. A.
, and
Megaridis
,
C. M.
,
1991
, “
Absorption and Scattering of Light by Polydisperse Aggregates
,”
Appl. Opt.
,
30
, pp.
4747
4754
.
14.
Ko¨ylu¨
,
U¨. O¨.
, and
Faeth
,
G. M.
,
1994
, “
Optical Properties of Overfire Soot in Buoyant Turbulent Diffusion Flames at Long Residence Times
,”
ASME J. Heat Transfer
,
116
, pp.
152
159
.
15.
Ko¨ylu¨
,
U¨. O¨.
, and
Faeth
,
G. M.
,
1994
, “
Optical Properties of Soot in Buoyant Laminar Diffusion Flames
,”
ASME J. Heat Transfer
,
116
, pp.
971
979
.
16.
Ko¨ylu¨
,
U¨. O¨.
, and
Faeth
,
G. M.
,
1996
, “
Spectral Extinction Coefficients of Soot Aggregates From Turbulent Diffusion Flames
,”
ASME J. Heat Transfer
,
118
, pp.
415
421
.
17.
Wu
,
J.-S.
,
Krishnan
,
S. S.
, and
Faeth
,
G. M.
,
1997
, “
Refractive Indices at Visible Wavelengths of Soot Emitted from Buoyant Turbulent Diffusion Flames
,”
ASME J. Heat Transfer
,
119
, pp.
230
237
.
18.
Sivathanu
,
Y. R.
, and
Faeth
,
G. M.
,
1990
, “
Soot Volume Fractions in the Overfire Region of Turbulent Diffusion Flames
,”
Combust. Flame
,
81
, pp.
133
149
.
19.
Ko¨ylu¨
,
U¨. O¨.
, and
Faeth
,
G. M.
,
1992
, “
Structure of Overfire Soot in Buoyant Turbulent Diffusion Flames at Long Residence Times
,”
Combust. Flame
,
89
, pp.
140
156
.
20.
Dobbins
,
R. A.
,
Mulholland
,
G. W.
, and
Bryner
,
N. P.
,
1993
, “
Comparison of a Fractal Smoke Optics Model With Light Extinction Measurements
,”
Atmos. Environ.
,
28
, pp.
889
897
.
21.
Choi
,
M. Y.
,
Mulholland
,
G. W.
,
Hamins
,
A.
, and
Kashiwagi
,
T.
,
1995
, “
Comparisons of the Soot Volume Fraction Using Gravimetric and Light Extinction Techniques
,”
Combust. Flame
,
102
, pp.
161
169
.
22.
Rosner
,
D. E.
,
Mackowski
,
D. W.
, and
Garcia-Ybarra
,
P.
,
1991
, “
Size- and Structure-Insensitivity of the Thermophoretic Transport of Aggregated ‘Soot’ Particles in Gases
,”
Combust. Sci. Technol.
,
80
, pp.
87
101
.
23.
Manickavasagam
,
S.
, and
Mengu¨c
,
M. P.
,
1993
, “
Effective Optical Properties of Coal/Char Particles Determined from FT-IR Spectroscopy Experiments
,”
Energy Fuels
,
7
, pp.
860
869
.
24.
Rudder
,
R. R.
, and
Bach
,
D. R.
,
1968
, “
Rayleigh Scattering of Ruby-Laser Light by Neutral Gases
,”
J. Opt. Soc. Am.
,
58
, pp.
1260
1266
.
25.
Dyer
,
T. M.
,
1979
, “
Rayleigh Scattering Measurements of Time-Resolved Concentration in a Turbulent Propane Jet
,”
AIAA J.
,
17
, pp.
912
914
.
26.
Ko¨ylu¨
,
U¨. O¨.
,
Faeth
,
G. M.
,
Farias
,
T. L.
, and
Carvalho
,
M. G.
,
1995
, “
Fractal and Projected Structure Properties of Soot Aggregates
,”
Combust. Flame
,
100
, pp.
621
633
.
27.
Ko¨ylu¨, U¨. O¨., 1992, “Structure of Overfire Soot in Buoyant Turbulent Diffusion Flames,” Ph. D. thesis, The University of Michigan, Ann Arbor, MI.
28.
Sivathanu
,
Y. R.
,
Gore
,
J. P.
,
Janssen
,
J. M.
, and
Senser
,
D. W.
,
1993
, “
A Study of In Situ Specific Absorption Coefficients of Soot Paricles in Laminar Flat Flames
,”
ASME J. Heat Transfer
,
115
, pp.
653
658
.
29.
Stagg
,
B. J.
, and
Charalampopoulos
,
T. T.
,
1993
, “
Refractive Indices of Pyrolytic Graphite, Amorphous Carbon, and Flame Soot in the Temperature Range 25 to 600°C
,”
Combust. Flame
,
94
, pp.
381
396
.
30.
Mulholland
,
G. W.
, and
Mountain
,
R. D.
,
1999
, “
Coupled Dipole Calculations of Extinction Coefficient and Polarization Ratio for Smoke Agglomerates
,”
Combust. Flame
,
119
, pp.
56
68
.
31.
Mulholland, G. W., and Choi, M. Y., 1998, “Measurement of the Mass Specific Extinction Coefficient for Acetylene and Ethane Using the Large Agglomerate Optics Facility,” Twenty-Seventh Symposium (International) on Combustion, The Combustion Insitute, Pittsburgh, PA, pp. 1515–1522.
You do not currently have access to this content.