Navier-Stokes simulations of three-dimensional flow and augmented convection in a channel with symmetric, transverse grooves on two opposite walls were performed for 180⩽Re⩽1600 using the spectral element technique. A series of flow transitions was observed as the Reynolds number was increased, from steady two-dimensional flow, to traveling two and three-dimensional wave structures, and finally to three-dimensional mixing. Three-dimensional simulations exhibited good agreement with local and spatially averaged Nusselt number and friction factor measurements over the range 800⩽Re⩽1600. [S0022-1481(00)00904-X]

1.
Webb, R. L., 1994, Principles of Enhanced Heat Transfer, John Wiley and Sons, New York.
2.
Ghaddar
,
N. K.
,
Korczak
,
K.
,
Mikic
,
B. B.
, and
Patera
,
A. T.
,
1986
, “
Numerical Investigation of Incompressible Flow in Grooved Channels. Part 1: Stability and Self-Sustained Oscillations
,”
J. Fluid Mech.
,
168
, pp.
541
567
.
3.
Greiner
,
M.
,
1991
, “
An Experimental Investigation of Resonant Heat Transfer Enhancement in Grooved Channels
,”
Int. J. Heat Mass Transf.
,
24
, pp.
1383
1391
.
4.
Roberts
,
E. P. L.
,
1994
, “
A Numerical and Experimental Study of Transition Processes in an Obstructed Channel Flow
,”
J. Fluid Mech.
,
260
, pp.
185
209
.
5.
Kozlu
,
H.
,
Mikic
,
B. B.
, and
Patera
,
A. T.
,
1988
, “
Minimum-Dissipation Heat Removal by Scale-Matched Flow Destabilization
,”
Int. J. Heat Mass Transf.
,
31
, pp.
2023
2032
.
6.
Karniadakis
,
G. E.
,
Mikic
,
B. B.
, and
Patera
,
A. T.
,
1988
, “
Minimum-Dissipation Transport Enhancement by Flow Destabilization: Reynolds Analogy Revisited
,”
J. Fluid Mech.
,
192
, pp.
365
391
.
7.
Amon
,
C. H.
,
Majumdar
,
D.
,
Herman
,
C. V.
,
Mayinger
,
F.
,
Mikic
,
B. B.
, and
Sekulic
,
D. P.
,
1992
, “
Experimental and Numerical Investigation of Oscillatory Flow and Thermal Phenomena in Communicating Channels
,”
Int. J. Heat Mass Transf.
,
35
, pp.
3115
3129
.
8.
Greiner
,
M.
,
Chen
,
R.-F.
, and
Wirtz
,
R. A.
,
1989
, “
Heat Transfer Augmentation Through Wall-Shaped-Induced Flow Destabilization
,”
ASME J. Heat Transfer
,
112
, pp.
336
341
.
9.
Greiner
,
M.
,
Chen
,
R.-F.
, and
Wirtz
,
R. A.
,
1991
, “
Enhanced Heat Transfer/Pressure Drop Measured From a Flat Surface in a Grooved Channel
,”
ASME J. Heat Transfer
,
113
, pp.
498
500
.
10.
Greiner
,
M.
,
Spencer
,
G.
, and
Fischer
,
P. F.
,
1998
, “
Direct Numerical Simulation of Three-Dimensional Flow and Augmented Heat Transfer in a Grooved Channel
,”
ASME J. Heat Transfer
,
120
, pp.
717
723
.
11.
Ghaddar
,
N. K.
,
Magen
,
M.
,
Mikic
,
B. B.
, and
Patera
,
A. T.
,
1986
, “
Numerical Investigation of Incompressible Flow in Grooved Channels. Part 2: Resonance and Oscillatory Heat Transfer Enhancement
,”
J. Fluid Mech.
,
168
, pp.
541
567
.
12.
Wirtz
,
R. A.
,
Huang
,
F.
, and
Greiner
,
M.
,
1999
, “
Correlation of Fully Developed Heat Transfer and Pressure Drop in a Symmetrically Grooved Channel
,”
ASME J. Heat Transfer
,
121
, pp.
236
239
.
13.
Patera
,
A. T.
,
1984
, “
A Spectral Element Method for Fluid Dynamics; Laminar Flow in a Channel Expansion
,”
J. Comput. Phys.
,
54
, pp.
468
488
.
14.
Maday, Y., and Patera, A. T., 1989, “Spectral Element Methods for the Navier-Stokes Equations,” State of the Art Surveys on Computational Mechanics, A. K. Noor and J. T. Oden, eds, ASME, New York, pp. 71–143.
15.
Orszag
,
S. A.
, and
Kells
,
L. C.
,
1980
, “
Transition to Turbulence in Plane Poiseuille Flow and Plane Couette Flow
,”
J. Fluid Mech.
,
96
, pp.
159
205
.
16.
Fischer, P. F., and Patera, A. T., 1992, “Parallel Spectral Element Solutions of Eddy-Promoter Channel Flow,” Proceedings of the European Research Community on Flow Turbulence and Computation Workshop, Lausanne, Switzerland, Cambridge University Press, Cambridge, UK, pp. 246–256.
17.
Patankar
,
S. V.
,
Liu
,
C. H.
, and
Sparrow
,
E. M.
,
1977
, “
Fully Developed Flow and Heat Transfer in Ducts Having Streamwise Periodic Variations of Cross-Sectional Area
,”
ASME J. Heat Transfer
,
99
, pp.
180
186
.
18.
Kays, W. M., and Crawford, M. E., 1993, Convection Heat and Mass Transfer, 3rd Ed., McGraw-Hill, New York.
19.
Fischer
,
P. F.
, and
Patera
,
A. T.
,
1991
, “
Parallel Spectral Element Solutions of the Stokes Problem
,”
J. Comput. Phys.
,
92
, pp.
380
421
.
20.
Fischer, P. F., and Ronquist, E. M., 1994, “Spectral Element Methods for Large Scale Parallel Navier-Stokes Calculations,” Comp. Meth. Mech. Eng., pp. 69–76.
You do not currently have access to this content.