Marangoni instability in a finite container with a deformable interface in the absence of gravity has been investigated. It is shown that the critical Marangoni number is a non-monotonic function of the length of the container. Two different physical mechanisms driving convection are indicated. The advection of heat is essential for the first, advective (“classical”) mechanism that gives rise to short wavelength modes. The interface deformation is essential for the second mechanism that gives rise to long wavelength modes. If the container is sufficiently long, the second mechanism leads to an unconditional instability. The available results suggest that the unconditional instability leads to segmentation of the interface.
Issue Section:
Natural and Mixed Convection
1.
Be´nard
, H.
, 1900
, “Les Tourbillons Cellulaires dans une Nappe Liquide
,” Rev. Gen. Sci. Pures Appl.
, 11
, pp. 1261
–1271
; 2.
11
, pp. 1309
–1328
.1.
Block
, M. J.
, 1956
, “Surface Tension as the Cause of Benard Cells and Surface Deformation in a Liquid Film
,” Nature (London)
, 178
, pp. 650
–651
.2.
Pearson
, J. R. A.
, 1958
, “On Convection Cells Induced by Surface Tension
,” J. Fluid Mech.
, 4
, pp. 489
–500
.3.
Scriven
, L. E.
, and Sterling
, C. V.
, 1964
, “On Cellular Convection Induced by Surface Tension Gradients: Effect of Mean Surface Tension and Viscosity
,” J. Fluid Mech.
, 19
, pp. 321
–340
.4.
Smith
, M. K.
, 1966
, “On Convective Instability Induced by Surface Tension Gradients
,” J. Fluid Mech.
, 24
, pp. 401
–414
.5.
Davis
, S. H.
, and Homsy
, G. M.
, 1980
, “Energy Stability Theory for Free Surface Problems: Buoyancy-Thermocapillary Layers
,” J. Fluid Mech.
, 98
, pp. 527
–553
.6.
Davis, S. H., 1983, “Rupture of Thin Liquid Films,” in Waves on Fluid Interfaces, R. E. Meyer, ed., Academic Press, New York, pp. 291–302.
7.
Davis
, S. H.
, 1987
, “Thermocapillary Instabilities
,” Annu. Rev. Fluid Mech.
, 19
, pp. 403
–435
.8.
Goussis
, D. A.
, and Kelly
, R. E.
, 1990
, “On the Thermocapillary Instabilities in a Liquid Layer Heated from Below
,” Int. J. Heat Mass Transf.
, 33
, pp. 2239
–2245
.9.
Krishnammoorthy
, S.
, Ramaswamy
, B.
, and Joo
, S. W.
, 1995
, “Spontaneous Rupture of Thin Liquid Films due to Thermocapillary: A Full Scale Numerical Simulation
,” Phys. Fluids
, 7
, pp. 2291
–2293
.10.
VanHook
, S. J.
, Schatz
, M. F.
, Swift
, J. B.
, McCormick
, W. D.
, and Swinney
, H. L.
, 1997
, “Long-Wavelength Surface-Tension-Driven Benard Convection: Experiment and Theory
,” J. Fluid Mech.
, 345
, pp. 45
–78
.11.
Winters
, K. H.
, Plesser
, Th.
, and Cliffe
, K. A.
, 1988
, “The Onset of Convection in a Container due to Surface Tension and Buoyancy
,” Physica D
, 29
, pp. 387
–401
.12.
Dijkstra
, H. A.
, 1992
, “On the Structure of Cellular Solution in Rayleigh-Benard-Marangoni Flows in Small-Aspect-Ration Containers
,” J. Fluid Mech.
, 243
, pp. 73
–102
.13.
Dijkstra
, H. A.
, 1995
, “Surface Tension Driven Cellular Patterns in Three-Dimensional Boxes—Linear Stability
,” Microgravity Sci. Technol.
, 7
, pp. 307
–312
.14.
Dijkstra
, H. A.
, 1995
, “Surface Tension Driven Cellular Patterns in Three-Dimensional Boxes—A Bifurcation Study
,” Microgravity Sci. Technol.
, 7
, pp. 307
–312
.15.
Dauby
, P. D.
, and Lebon
, G.
, 1996
, “Marangoni-Benard Instability in Rigid Rectangular Containers
,” J. Fluid Mech.
, 329
, pp. 25
–64
.16.
Perez-Garcia
, C.
, Echebarria
, B.
, and Bestehorn
, M.
, 1998
, “Thermal Properties in Surface-Tension-Driven Convection
,” Phys. Rev. E
, 57
, pp. 475
–481
.17.
Hamed
, M.
, and Floryan
, J. M.
, 2000
, “Marangoni Convection: Part 1—Cavity with Differentially Heated Side Walls
,” J. Fluid Mech.
, 405
, pp. 79
–110
.18.
Hamed
, M.
, and Floryan
, J. M.
, 1998
, “Numerical Simulation of Unsteady Nonisothermal Capillary Interfaces
,” J. Comput. Phys.
, 145
, pp. 110
–140
.19.
Chen
, C.
, and Floryan
, J. M.
, 1994
, “Numerical Simulation of Non-isothermal Capillary Interfaces
,” J. Comput. Phys.
, 111
, pp. 183
–193
.20.
Koschmieder
, E. L.
, and Prahl
, S. A.
, 1990
, “Surface-Tension-Driven Benard Convection in Small Containers
,” J. Fluid Mech.
, 215
, pp. 571
–583
.21.
Floryan
, J. M.
, and Chen
, C.
, 1994
, “Thermocapillary Convection and Existence of Continuous Layer in the Absence of Gravity
,” J. Fluid Mech.
, 277
, pp. 303
–329
.Copyright © 2001
by ASME
You do not currently have access to this content.