The importance of radiation and of radiative properties (extinction coefficient, scattering albedo and scattering phase function) in inert porous media combustion was numerically assessed. The two-dimensional mass, momentum, solid and gas energy, and species conservation equations were solved. Emission, absorption and scattering by the porous media were taken into consideration and the S6 approximation was used to solve the radiative transfer equation. The temperature profiles are very sensitive to a perturbation in the radiative coefficients, particularly when the scattering albedo is increased. When compared to the isotropic scattering assumption, using zero, large diffuse spheres’, linear-anisotropic and modified Henyey–Greenstein phase functions leads to an average temperature difference no bigger than 7 percent. When radiation is neglected, the predicted temperature profile is not in agreement with the available experimental values.

1.
Howell
,
J. R.
,
Hall
,
M. J.
, and
Ellzey
,
J. L.
,
1996
, “
Combustion of Hydrocarbon Fuels Within Porous Inert Media
,”
Prog. Energy Combust. Sci.
,
22
, pp.
121
145
.
2.
Durst, F., and Trimis, D., 1997, “Combustion by Free Flames Versus Combustion Reactors,” Proceedings, IV International Conference on Technologies and Combustion for a Clean Environment, Vol. 11, pp. IL 7.
3.
Hendricks
,
T. J.
, and
Howell
,
J. R.
,
1996
, “
Absorption/scattering Coefficients and Scattering Phase Functions in Reticulated Porous Ceramics
,”
ASME J. Heat Transfer
,
118
, pp.
79
87
.
4.
Mital
,
R.
,
Gore
,
J. P.
, and
Viskanta
,
R.
,
1996
, “
Measurements of Radiative Properties of Cellular Ceramics at High Temperatures
,”
J. Thermophys. Heat Transfer
,
10
, pp.
33
38
.
5.
Sathe
,
S. B.
,
Peck
,
R. E.
, and
Tong
,
T. W.
,
1990
, “
Flame Stabilization and Multimode Heat Transfer in Inert Porous Media: A Numerical Study
,”
Combust. Sci. Technol.
,
70
, pp.
93
109
.
6.
Drift, A., van der Beckers, G. J. J., Smit, K., and Beesteheerde, J., 1994, “An Experimental and Numerical Study of Porous Radiant Burners,” Proceedings, Eurotherm Seminar no. 37, pp. 275–285.
7.
Lim. I.-G., 1997, “Effect of Solid Properties on CO and NO Emission in Premixed Combustion Within Porous Ceramic Burner,” Proceedings, IV International Conference on Technologies and Combustion for a Clean Environment, Vol. II, p. 28.
8.
Malico
,
I.
, and
Pereira
,
J. C. F.
,
1999
, “
Numerical Predictions of Porous Burners with Integrated Heat Exchanger for Household Applications
,”
Journal of Porous Media
,
2
, pp.
153
162
.
9.
Yoshizawa
,
Y.
,
Sasaki
,
K.
, and
Echigo
,
R.
,
1988
, “
Analytical Study of the Structure of Radiation Controlled Flame
,”
Int. J. Heat Mass Transf.
,
31
, pp.
311
319
.
10.
Hsu
,
P.-F.
,
Howell
,
J. R.
, and
Matthews
,
R. D.
,
1993
, “
A Numerical Investigation of Premixed Combustion Within Porous Inert Media
,”
ASME J. of Heat Transfer
,
115
, pp.
744
750
.
11.
Baek
,
S. W.
,
1989
, “
The Premixed Flame in a Radiatively Active Porous Medium
,”
Combust. Sci. Technol.
,
64
, pp.
277
287
.
12.
Fu. X., 1997, “Modelling of a Submerged Flame Porous/radiant Heater,” Ph.D. thesis, Purdue University, West Lafayette, IN.
13.
Malico. I., and Pereira, J. C. F., 1997, “Numerical Predictions of Two-dimensional Radiative Heat Transfer in Porous Burners,” Proceedings, IV International Conference on Technologies and Combustion for a Clean Environment, Vol. II, pp. 27.24.
14.
Malico
,
I.
,
Zhou
,
X.-Y.
, and
Pereira
,
J. C. F.
,
2000
, “
Two-dimensional Numerical Study of Combustion and Pollutants Formation in Porous Burners
,”
Combust. Sci. Technol.
,
152
, pp.
57
59
.
15.
Ernd, K., 1994, “Optimierung der Betriebsparameter von Poro¨sen Brennra¨umen durch Experimentelle Parametrische Untersuchung der Einflußgro¨ßen,” Diplomarbeit, Lehrstuhl fu¨r Stro¨mungsmechanik, Erlangen.
16.
Trimis, D., and Durst, F., 1996, “Compact Low Emission Combustion Reactors with Integrated Heat Exchangers Using Porous Medium Combustion,” Proceedings, First European Conference on Small Burner Technology and Heating Equipment, Vol. I.
17.
Ergun
,
S.
,
1952
, “
Fluid Flow through Packed Columns
,”
Chem. Eng. Prog.
,
48
, pp.
89
94
.
18.
Macdonald
,
I. F.
,
El-Sayed
,
M. S.
,
Mow
,
K.
, and
Dullien
,
F. A. L.
,
1979
, “
Flow through Porous Media—Ergun Equation Revisited
,”
Ind. Eng. Chem. Fundam.
,
18
, pp.
199
208
.
19.
Wakao, N., and Kaguei, S., 1982, Heat and Mass Transfer in Packed Beds, Gordon and Breach Science Publishers, London.
20.
Younis
,
L. B.
, and
Viskanta
,
R.
,
1993
, “
Experimental Determination of the Volumetric Heat Transfer Coefficient Between Stream of air and Ceramic Foam
,”
Int. J. Heat Mass Transf.
,
36
, pp.
1425
1434
.
21.
Kuo, K. K., 1986, Principles of Combustion, John Wiley and Sons, New York.
22.
Mohamad
,
A. A.
,
Ramadhyani
,
S.
, and
Viskanta
,
R.
,
1994
, “
Modelling of Combustion and Heat Transfer in a Packed Bed with Embedded Coolant Tubes
,”
Int. J. Heat Mass Transf.
,
37
, pp.
1181
1191
.
23.
Siegel, R., and Howell, J. R., 1992, Thermal Radiation Heat Transfer, Taylor & Francis, Washington, DC.
24.
Prahl, S. A., 1988, “Light Transport in Tissue,” Ph.D. dissertation, University of Texas at Austin.
25.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, New York.
26.
Hsu
,
P.-F.
, and
Matthews
,
R. D.
,
1993
, “
The Necessity of Using Detailed Kinetics in Models for Premixed Combustion within Porous Media
,”
Combust. Flame
,
93
, pp.
457
466
.
You do not currently have access to this content.