A numerical study is reported for high Reynolds number forced convection in a channel filled with rigid metallic fibrous materials of high porosity. The effects of convective and form inertia, viscous shear, and thermal dispersion are all considered together. Inertia and thermal dispersion are modeled. The numerical results suggest that heat transfer rate increases with increasing Reynolds number within a range, but not significantly beyond that range. The heat transfer rate also increases with stagnant thermal conductivity, and decreases with Darcy number. The fiber thickness was found to have significant influence on thermal dispersion. The range of applicability of the local volume averaging in terms of the significant parameters is discussed.

1.
Beavers
,
G. S.
, and
Sparrow
,
E. M.
,
1969
, “
Non-Darcy Flow Through Fibrous Porous Media
,”
ASME J. Appl. Mech.
,
36
, pp.
711
714
.
2.
Nield, D. N., and Bejan, A., 1999, Convection in Porous Media, 2nd ed., Springer-Verlag, New York.
3.
Kaviany, M., 1995, Principles of Heat Transfer in Porous Media, 2nd ed., Springer-Verlag, New York.
4.
Lage, J. L., 1998, “The Fundamental Theory of Flow Through Permeable Media From Darcy to Turbulence,” in Transport in Porous Media, D. B. Ingham and I. Pop, eds., Pergamon, Oxford, pp. 1–30.
5.
Whitaker
,
S.
,
1969
, “
Advances in Theory of Fluid Motion in Porous Media
,”
Ind. Engrg. Chem.
,
61
, pp.
14
28
.
6.
Stattery
,
J. C.
,
1969
, “
Single-Phase Flow Through Porous Media
,”
AIChE J.
,
15
, pp.
866
872
.
7.
Vafai
,
K.
, and
Tien
,
C. L.
,
1981
, “
Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transf.
,
24
, pp.
195
203
.
8.
Vafai
,
K.
, and
Tien
,
C. L.
,
1982
, “
Boundary and Inertia Effects on Convective Mass Transfer in Porous Media
,”
Int. J. Heat Mass Transf.
,
25
, pp.
1183
1190
.
9.
Vafai
,
K.
,
1984
, “
Convective Flow and Heat Transfer in Variable-Porosity Media
,”
J. Fluid Mech.
,
147
, pp.
233
259
.
10.
Vafai
,
K.
,
Alkire
,
R. L.
, and
Tien
,
C. L.
,
1985
, “
An Experimental Investigation of Heat Transfer in Variable Porosity Media
,”
ASME J. Heat Transfer
107
, pp.
642
647
.
11.
Kaviany
,
M.
,
1985
, “
Laminar Flow Through a Porous Channel Bounded by Isothermal Parallel Plates
,”
Int. J. Heat Mass Transf.
,
28
, pp.
851
858
.
12.
Beckermann
,
C.
, and
Viskanta
,
R.
,
1987
, “
Forced Convection Boundary Layer Flow and Heat Transfer Along a Flat Plate Embedded in a Porous Medium
,”
Int. J. Heat Mass Transf.
,
30
, pp.
1547
1551
.
13.
Vafai
,
K.
, and
Kim
,
S. J.
,
1989
, “
Forced Convection in a Channel Filled With a Porous Medium: An Exact Solution
,”
ASME J. Heat Transfer
,
111
, pp.
1103
1106
.
14.
Nield
,
D. A.
,
Junqueira
,
S. L. M.
, and
Lage
,
J. L.
,
1996
, “
Forced Convection in a Fluid-Saturated Porous-Medium Channel With Isothermal or Isoflux Boundaries
,”
J. Fluid Mech.
,
322
, pp.
201
214
.
15.
Nield
,
D. A.
,
Porneala
,
D. C.
, and
Lage
,
J. L.
,
1999
, “
A Theoretical Study, With Experimental Verification, of the Temperature-Dependent Viscosity Effect on the Forced Convection Through a Porous Medium Channel
,”
ASME J. Heat Transfer
,
121
, pp.
500
503
.
16.
Koch
,
D. L.
, and
Brady
,
J. L.
,
1986
, “
The Effective Diffusivity of Fibrous Media
,”
AIChE J.
,
32
, pp.
575
591
.
17.
Muskat, M., 1937, The Flow of Homogeneous Fluids Through Porous Media, McGraw-Hill, New York.
18.
Reynolds, O., 1901, Papers on Mechanical and Physical Subjects, 2(44), Cambridge University Press, pp. 51–105.
19.
Green
,
L.
, and
Duwez
,
P.
,
1951
, “
Fluid Flow Through Porous Metals
,”
ASME J. Appl. Mech.
,
18
, pp.
39
45
.
20.
Ward
,
J. C.
,
1964
, “
Turbulent Flow in Porous Media
,”
ASCE J. Hydraulics Div.
,
90
, pp.
1
12
.
21.
Brownell
,
L. E.
,
Dombrowski
,
H. S.
, and
Dickey
,
C. A.
,
1950
, “
Pressure Drop Through Porous Media
,”
Chem. Eng. Prog.
,
46
, pp.
415
422
.
22.
Brinkman
,
H. C.
,
1947
, “
A Calculation of the Viscous Force Exerted by a Flowing Fluid on a Dense Swarm of Particles
,”
Appl. Sci. Res.
,
A1
, pp.
27
34
.
23.
Slattery, J. C., 1972, Momentum, Energy and Mass Transfer in Continua, McGraw-Hill, New York.
24.
Roache, P. J., 1998, Fundamentals of Computational Fluid Dynamics, Hermosa, Albuquerque, NM.
25.
Spielman
,
L.
, and
Goren
,
S. L.
,
1968
, “
Model for Predicting Pressure Drop and Filtration Efficiency in Fibrous Media
,”
Envi. Sci. Tech.
,
2
, pp.
279
287
.
26.
Anderson, D. A., Tannehill, J. C., and Pletcher, R. H., 1984, Computational Fluid Mechanics and Heat Transfer, Taylor & Francis; Chap. 9.
27.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, Numerical Recipes: The Art of Scientific Computing, 2nd ed., Cambridge University Press, New York; Chap. 4.
28.
Shames, I. H., 1992, Mechanics of Fluids, 3rd ed., McGraw-Hill, New York; Chap. 7.
You do not currently have access to this content.