A theoretical model of exergy balance based on availability transfer and flow availability in the process of spray combustion in a gas turbine combustor has been developed to evaluate the total thermodynamic irreversibility and second law efficiency of the process at various operating conditions, for fuels with different volatilities. The velocity, temperature and concentration fields in the combustor, required for the evaluation of the flow availabilities and process irreversibilities, have been computed numerically from a two phase separated flow model of spray combustion. The total thermodynamic irreversibility in the process of spray combustion has been determined from the difference in the flow availability at inlet and outlet of the combustor. The irreversibility caused by the gas phase processes in the combustor has been obtained from the entropy transport equation, while that due to the inter-phase transport processes has been obtained as a difference of gas phase irreversibilities from the total irreversibility. A comparative picture of the variations of combustion efficiency and second law efficiency at different operating conditions for fuels with different volatilities has been made to throw light on the trade off between the effectiveness of combustion and the lost work in the process of spray combustion in a gas turbine combustor.

1.
Faeth
,
G. M.
,
1983
, “
Evaporation and Combustion of Sprays
,”
Prog. Energy Combust. Sci.
,
9
, pp.
1
76
.
2.
Faeth
,
G. M.
,
1987
, “
Mixing, Transport and Combustion in Sprays
,”
Prog. Energy Combust. Sci.
,
13
, pp.
293
293
.
3.
Sirignano
,
W. A.
,
1983
, “
Fuel Droplet Vaporization and Spray Combustion Theory
,”
Prog. Energy Combust. Sci.
,
9
, pp.
291
291
.
4.
Sirignano
,
W. A.
,
1986
, “
The Formulation of Spray Combustion Models: Resolutions Compared to Droplet Spacing
,”
ASME J. Heat Transfer
,
108
, pp.
633
633
.
5.
Sirignano
,
W. A.
,
1988
, “
An Integrated Approach to Spray Combustion Model Development
,”
Combust. Sci. Technol.
,
58
, pp.
231
231
.
6.
Dash
,
S. K.
,
Sengupta
,
S. P.
, and
Som
,
S. K.
,
1991
, “
Transport Processes and Associated Irreversibilities in Droplet Evaporation
,”
Am. Inst. Aeronaut. Astronaut. J. Thermo Physics and heat Transfer
,
5
(
3
), pp.
366
371
.
7.
Dash
,
S. K.
, and
Som
,
S. K.
,
1991
, “
Transport Processes and Associated Irreversibilities in Droplet Combustion in a Convective Medium
,”
Int. J. Energy Res.
,
15
, pp.
603
603
.
8.
Puri
,
I. K.
,
1992
, “
Second Law Analysis of Convective Droplet Burning
,”
Int. J. Heat Mass Transf.
,
35
, pp.
2571
2571
.
9.
Hiwase
,
S. D.
,
Datta
,
A.
, and
Som
,
S. K.
,
1998
, “
Entropy Balance and Exergy Analysis in the Process of Droplet Combustion
,”
J. Phys. D
,
31
, pp.
1601
1601
.
10.
Dash
,
S. K.
, and
Som
,
S. K.
,
1993
, “
Thermodynamics of Spray Evaporation
,”
J. Phys. D
,
26
, pp.
574
574
.
11.
Dunbar
,
W. R.
, and
Lior
,
N.
,
1994
, “
Sources of Combustion Irreversibility
,”
Combust. Sci. Technol.
,
103
, pp.
41
41
.
12.
Westbrook
,
C. K.
, and
Dryer
,
F. L.
,
1981
, “
Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames
,”
Combust. Sci. Technol.
,
27
, pp.
31
45
.
13.
Magnussen, B. F., Hjertager, B. H., 1977, “On Mathematical Modeling of Turbulent Combustion With Special Emphasis on Soot Formation and Combustion,” Sixteenth Symposium (International) on Combustion, The Combustion Institute, pp. 719–727.
14.
Ozisik, M. N., 1973, Radiative Heat Transfer, Wiley, New York.
15.
Sparrow, E. M., Cess, R. D., 1978, Radiation Heat Transfer, Hemisphere, Washington DC.
16.
Clift, R., Grace, J. R., and Weber, M. E., 1978, Bubbles, Drops and Particles, Academic Press, New York.
17.
Ranz
,
W. E.
, and
Marshall
,
W. R.
, Jr.
,
1952
, “
Evaporation From Drops: Part II
,”
Chem. Eng. Prog.
,
48
, pp.
173
180
.
18.
Mugele
,
R. A.
, and
Evans
,
H. D.
,
1951
, “
Droplet Size Distribution in Sprays
,”
Ind. Eng. Chem.
,
43
,
1317
1324
.
19.
Hirt
,
C. W.
, and
Cook
,
J. L.
,
1972
, “
Calculating Three Dimensional Flows Around Structures and over Rough Terrain
,”
J. Comput. Phys.
,
10
, pp.
324
341
.
20.
Harlow
,
F. H.
, and
Welch
,
J. E.
,
1965
, “
Numerical Computation of Time Dependent Viscous Incompressible Flow of Fluid with a Free Surface
,”
Phys. Fluids
,
8
(
12
), pp.
2182
2190
.
21.
Cameron
,
C. D.
,
Brouwer
,
J.
,
Wood
,
C. P.
, and
Samuelson
,
G. S.
,
1989
, “
A Detailed Characterization of Velocity and Thermal Fields in a Model Can Combustor With Wall Jet Injection
,”
ASME J. Eng. Gas Turbines Power
,
3
, pp.
31
40
.
22.
Chang
,
K. C.
, and
Chen
,
C. S.
,
1993
, “
Development of a Hybrid k-ε Turbulence Model for Swirling Recirculating Flows Under Moderate to Strong Swirl Intensities
,”
Int. J. Numer. Methods Fluids
,
16
, pp.
421
421
.
23.
Dallenback, P. A., 1986, “Heat Transfer and Velocity Measurements in Turbulent Swirling Flow Through an Abrupt Axi-symmetric Expansion,” Ph.D thesis, Arizona State University, Tempe, A2.
24.
Khalil, K. H., El Mahallawy, F. M., and Moneib, H. A., 1977, “Effect of Combustion Air Swirl on the Flow Pattern in a Cylindrical Oil Fired Furnace,” Sixteenth Symposium (International) on Combustion, The Combustion Institute., pp. 135–141.
25.
Moran, M. J., and Shapiro, H. N., 1988, Fundamentals of Engineering Thermodynamics, John Wiley, New York.
26.
Hirschfelder, J. C., Curtiss, C. F., and Bird, R. B., 1954, Molecular Theory of Gases and Liquids, John Wiley, New York.
You do not currently have access to this content.