A fine metallic wire electrode is heated from below (by an electric discharge) causing melting and roll-up into a ball by surface tension. After the heating is terminated, a solidification front progresses through the melt until a solid ball is formed and cooled to ambient conditions. In this paper we numerically simulate the heating, melt motion and roll up and subsequent cooling and solidification. This is a three-phase problem (solid, liquid, and the ambient medium—plasma/gas) with two simultaneously moving phase interfaces, the outer one tracked by orthogonal grid generation conformal with the evolving boundary surface at each time interval. A novel observation in this study is that the wire end first drops until the melt radius equals the wire radius and then it begins to roll up into a ball consuming the wire. In other words, the inter-electrode gap first reduces and subsequently increases during an electronic flame off (EFO) discharge heating/phase-change process.

1.
Qin
,
W.
,
Cohen
,
Ira. M.
, and
Ayyaswamy
,
P. S.
,
2000
, “
Charged Particle Distributions and Heat Transfer in a Discharge Between Geometrically Dissimilar Electrodes: From Breakdown to Steady State
,”
Phys. Plasmas
,
7
(
2
), pp.
719
728
.
2.
Yeung
,
R. W.
,
1982
, “
Numerical Methods in Free-Surface Flows
,”
Annu. Rev. Fluid Mech.
,
14
, pp.
395
442
.
3.
Tsai
,
W. T.
, and
Yue
,
D. K. P.
,
1996
, “
Computation of Nonlinear Free-Surface Flows
,”
Annu. Rev. Fluid Mech.
,
28
, pp.
249
278
.
4.
Shyy, W., Udaykumar, H. S., Rao, M. M., and Smith, R. W., 1996, Computational Fluid Dynamics With Moving Boundaries, Taylor & Francis, Washington, DC.
5.
Finlayson, B. A., 1992, Numerical Methods for Problems With Moving Fronts, Ravenna Park Publishing, Inc., Seattle, WA.
6.
Alexiades, V., and Solomon, A. D., 1993, Mathematical Modeling of Melting and Freezing Processes, Hemisphere, Bristol, PA.
7.
Ryskin
,
G.
, and
Leal
,
L. G.
,
1984
, “
Numerical Solution of Free-Boundary Problems in Fluid Mechanics. Part 1. The Finite-Difference Technique
,”
J. Fluid Mech.
,
148
, pp.
1
17
.
8.
Kang
,
I. S.
, and
Leal
,
L. G.
,
1987
, “
Numerical Solution of Axisymmetric, Unsteady Free-Boundary Problems at Finite Reynolds Number. I. Finite-Difference Scheme and Its Application to the Deformation of a Bubble in a Uniaxial Straining Flow
,”
Phys. Fluids
,
30
, pp.
1929
1940
.
9.
Juric
,
D.
, and
Tryggvason
,
G.
,
1996
, “
A Front-Tracking Method for Dendritic Solidification
,”
J. Comput. Phys.
,
123
, pp.
127
148
.
10.
Unverdi
,
S. O.
, and
Tryggvason
,
G.
,
1992
, “
A Front-Tracking Method for Viscous, Incompressible, Multi-Fluid Flow
,”
J. Comput. Phys.
,
100
, pp.
25
37
.
11.
Bonacina
,
C.
,
Comini
,
G.
,
Fasans
,
A.
, and
Primiceris
,
M.
,
1973
, “
Numerical Solution of Phase Change Problems
,”
Int. J. Heat Mass Transfer
,
16
, pp.
1825
1832
.
12.
Huang
,
L. J.
,
Ayyaswamy
,
P. S.
, and
Cohen
,
Ira. M.
,
1995
, “
Melting and Solidification of Thin Wires: A Class of Phase-Change Problems With a Mobile Interface-I. Analysis
,”
Int. J. Heat Mass Transfer
,
38
(
9
), pp.
1637
1645
.
13.
Yoo
,
J.
, and
Rubinsky
,
B.
,
1983
, “
Numerical Computation Using Finite Elements for the Moving Interface in Heat Transfer Problems With Phase Change Transformation
,”
Numer. Heat Transfer
,
6
, pp.
209
222
.
14.
Bounds
,
S.
,
Moran
,
G.
,
Pericleous
,
K.
,
Cross
,
M.
, and
Croft
,
T. N.
,
2000
, “
A Computational Model for Defect Prediction in Shape Castings Based on the Interaction of Free Surface Flow, Heat Transfer, and Solidification Phenomena
,”
Metall. Mater. Trans. B
,
31
(
3
), pp.
515
527
.
15.
Hsiao
,
J. S.
,
1985
, “
An Efficient Algorithm for Finite-Difference Analysis of Heat Transfer With Melting and Solidification
,”
Numer. Heat Transfer
,
8
, pp.
653
666
.
16.
Shamsundar
,
N.
, and
Sparrow
,
E.
,
1975
, “
Analysis of Multidimensional Phase Change via the Enthalpy Model
,”
ASME J. Heat Transfer
,
19
, pp.
333
340
.
17.
Cohen
,
Ira. M.
,
Huang
,
L. J.
, and
Ayyaswamy
,
P. S.
,
1995
, “
Melting and Solidification of Thin Wires: A Class of Phase-Change Problems With a Mobile Interface-II. Experimental Confirmation
,”
Int. J. Heat Mass Transfer
,
38
(
9
), pp.
1647
1659
.
18.
Liu
,
A.
,
Voth
,
T. E.
, and
Bergman
,
T. L.
,
1993
, “
Pure Material Melting and Solidification With Liquid Phase Buoyancy and Surface Tension Force
,”
Int. J. Heat Mass Transfer
,
36
, pp.
411
422
.
19.
Sadhal, S. S., Ayyaswamy, P. S., and Chung, J. N., 1997, Transport Phenomena With Bubbles and Drops, Springer, New York.
20.
Ayyaswamy, P. S., Sripada, S. S., and Cohen, Ira. M., 1999, “Interfacial Motion of a Molten Layer Subject to Plasma Heating,” Fluid Dynamics at Interfaces, Wei Shyy and Ranga Narayanan, eds., Cambridge University Press, New York, pp. 320–338.
21.
Sripada, Srinivas. S., 1999, “Fundamental Studies of Plasma Applications in Microelectronic Manufacturing and Flames: Fluid Mechanics, Phase-Change, and Heat Transfer,” Ph.D. thesis, Univ. of Pennsylvania.
22.
Sripada
,
Srinivas, S.
,
Ayyaswamy
,
P. S.
, and
Cohen
,
I. M.
,
1998
, “
Weakly Ionized Plasma Heat Transfer Between Geometrically Dissimilar Electrodes
,”
ASME J. Heat Transfer
,
120
(
3
), pp.
939
942
.
23.
Ryskin
,
G.
, and
Leal
,
L. G.
,
1983
, “
Orthogonal Mapping
,”
J. Comput. Phys.
,
50
, pp.
71
100
.
24.
Eca
,
L.
,
1996
, “
2D Orthogonal Grid Generation With Boundary Point Distribution Control
,”
J. Comput. Phys.
,
125
, pp.
440
453
.
25.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, DC.
26.
de Zeeuw
,
P. M.
,
1990
, “
Matrix-Dependent Prolongations and Restrictions in a Blackbox Multigrid Solver
,”
J. Comput. Appl. Math.
,
33
, pp.
1
27
.
27.
de Zeeuw, P. M., 1997, “Acceleration of Iterative Methods by Coarse Grid Corrections,” Ph.D. thesis, Univ. of Amsterdam.
28.
Raithby
,
G. D.
,
Galpin
,
P. F.
, and
Van Doormaal
,
J. P.
,
1986
, “
Prediction of Heat and Fluid Flow in Complex Geometries Using General Orthogonal Coordinates
,”
Numer. Heat Transfer
,
9
, pp.
125
142
.
29.
Karki
,
K. C.
, and
Patankar
,
S. V.
,
1988
, “
Calculation Procedure for Viscous Incompressible Flows in Complex Geometries
,”
Numer. Heat Transfer
,
14
, pp.
295
307
.
30.
Shyy, W., 1994, Computational Modeling for Fluid Flow and Interfacial Transport, Elsevier, Amsterdam.
31.
Bennon
,
W. D.
, and
Incropera
,
F. P.
,
1988
, “
Numerical Analysis of Binary Solid-Liquid Phase-Change Using a Continuum Model
,”
Numer. Heat Transfer
,
13
(
3
), pp.
277
296
.
32.
Ferziger, J. H., and Peric, M., 1996, Computational Methods for Fluid Dynamics, Springer, New York.
33.
Miller, R. R., 1952, Liquid-Metals Handbook, 2nd edition, R. N. Lyon et al.,eds., Office of Naval Research, Dept. of Navy, Washington, DC, pp. 38–102; Chpt. 2.
34.
Ho
,
C. Y.
,
Powell
,
R. W.
, and
Liley
,
P. E.
,
1974
, “
Thermal Conductivity of the Elements: a Comprehensive Review
,”
J. Phys. Chem. Ref. Data
,
3
,
Suppl. 1
Suppl. 1
.
35.
Beer, S. Z., 1972, Liquid Metals: Chemistry and Physics, Marcel Dekker, Inc., New York.
36.
Sripada, S. S., Cohen, I. M., and Ayyaswamy, P. S., “A Study of the Electronic Flame Off Discharge Process Used for Ball Bonding in Microelectronic Packaging,” 1996, Transport Phenomena in Materials Processing and Manufacturing, Proc. Int. Mech. Eng. Congress & Expo, HTD-336, ASME, New York, pp. 129–136.
You do not currently have access to this content.