Experiments are carried out here to measure the evaporation heat transfer coefficient hr and associated frictional pressure drop ΔPf in a vertical plate heat exchanger for refrigerant R-410A. The heat exchanger consists of two vertical counterflow channels which are formed by three plates whose surface corrugations have a sine shape and a chevron angle of 60 deg. Upflow boiling of refrigerant R-410A receives heat from the hot downflow of water. In the experiments, the mean vapor quality in the refrigerant channel is varied from 0.10 to 0.80, the mass flux from 50 to 100 kg/m2s, and the imposed heat flux from 10 to 20 kW/m2 for the system pressure fixed at 1.08 and 1.25 MPa. The measured data indicate that both hr and ΔPr increase with the refrigerant mass flux except at low vapor quality. In addition, raising the imposed heat flux is found to significantly improve hr for the entire range of the mean vapor quality. However, the corresponding friction factor ftp is insensitive to the imposed heat flux and refrigerant pressure. Based on the present data, empirical correlations are provided for hr and ftp, for R-410A in the plate heat exchanger.

1.
Newman
,
P. A.
,
1988
, “
Preserving Earth’s Stratosphere
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
120
, pp.
88
91
.
2.
Gopalnarayanan
,
S.
,
1998
, `‘
Choosing the Right Refigerant
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
120
, pp.
92
95
.
3.
Chamra
,
L. M.
, and
Webb
,
R. L.
,
1996
, “
Advanced Micro-Fin Tubes for Evaporation
,”
Int. J. Heat Mass Transf.
,
39
, pp.
1827
1838
.
4.
Schlager
,
L. M.
,
Pate
,
M. B.
, and
Bergles
,
A. E.
,
1990
, “
Evaporation and condensation Heat Transfer and Pressure Drop in Horizontal 12.7-mm Microfin Tubes With Refrigerant 22
,”
ASME J Heat Transfer
, ,
112
, pp.
1041
1047
.
5.
Kubanek
,
G. R.
, and
Miletti
,
D. L.
,
1979
, “
Evaporative Heat Transfer and Pressure Drop Performance of Internally-Finned Tubes With Refrigerant 22
,”
ASME J. Heat Transfer
, ,
101
, pp.
447
452
.
6.
Liu
,
X.
,
1997
, “
Condensing and Evaporating Heat Transfer and Pressure Drop Characteristics of HFC-134a and HCFC-22
,”
ASME J. Heat Transfer
, ,
119
, pp.
158
163
.
7.
Sami
,
S. M.
, and
Poirier
,
B.
,
1997
, “
Comparative Study of Heat Transfer Characteristics of New Alternatives to R-22
,”
ASHRAE Trans.
,
103
, pp.
824
829
.
8.
Sami
,
S. M.
, and
Poirier
,
B.
,
1998
, “
Two Phase Flow Heat Transfer of Binary Mixtures Inside Enhanced Surface Tubing
,”
Int. Commun. Heat Mass Transfer
,
25
, pp.
763
773
.
9.
Wang
,
C. C.
,
Yu
,
J. G.
,
Lin
,
S. P.
, and
Lu
,
D. C.
,
1998
, “
An Experimental Study of Convective Boiling of Refrigerant R-22 and R-410A
,”
ASHRAE Trans.
,
104
, pp.
1144
1150
.
10.
Ebisu
,
T.
, and
Torikoshi
,
K.
,
1998
, “
Heat Transfer Characteristics and Correlations for R-410A Flowing Inside a Horizontal Smooth Tube
,”
ASHRAE Trans.
,
104
, pp.
556
561
.
11.
Wijaya
,
H.
, and
Spatz
,
M. W.
,
1995
, “
Two-Phase Flow Heat Transfer and Pressure Drop Characteristics of R-22 and R-32/R125
,”
ASHRAE Trans.
,
101
, pp.
1020
1027
.
12.
Shah, R. K., and Focke, W. W., 1988, “Plate Heat Exchangers and their Design Theory,” Heat Transfer Equipment Design, R. K. Shah, E. C. Subbarao, and Mashelkar, R. A., eds. Hemisphere, Washington, pp. 227–254.
13.
Muley
,
A.
, and
Manglik
,
R. M.
,
1999
, “
Experimental Study of Turbulent Flow Heat Transfer and Pressure Drop in a Plate Heat Exchanger With Chevron Plates
,”
ASME J. Heat Transfer
, ,
121
, pp.
110
117
.
14.
Muley
,
A.
,
Manglik
,
R. M.
, and
Metwally
,
H. M.
,
1999
, “
Enhanced Heat Transfer Characteristics of Viscous Liquid Flows in a Chevron Plate Heat Exchanger
,”
ASME J. Heat Transfer
, ,
121
, pp.
1011
1017
.
15.
Thonon
,
B.
,
Vidil
,
R.
, and
Marvillet
,
C.
,
1995
, “
Recent Research and Developments in Plate Heat Exchangers
,”
J. of Enhanced Heat Transfers
,
2
, pp.
149
155
.
16.
Yan
,
Y. Y.
, and
Lin
,
T. F.
,
1999
, “
Evaporation Heat Transfer and Pressure Drop of Refrigerant R-134a in a Plate Heat Exchanger
,”
ASME J. Heat Transfer
, ,
121
, pp.
118
127
.
17.
Wilson
,
E. E.
,
1915
, “
A Basic for Traditional Design of Heat Transfer Apparatus
,”
Trans. ASME
,
37
, pp.
47
70
.
18.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
, pp.
3
12
.
19.
Collier, J. G., 1981, Convective Boiling and Condensation, 2nd ed., McGraw-Hill, New York, pp. 26–69.
20.
Gungor
,
K. E.
, and
Winterton
,
R. H. S.
,
1986
, “
A General Correlation for Flow Boiling in Tubes and Annuli
,”
Int. J. Heat Mass Transf.
,
29
, pp.
351
358
.
21.
Incropera, F. P., and Dewitt, D. P., 1981, Fundamentals of Heat Transfer, John Wiley & Sons, New York, p. 406.
22.
Cooper, M. G., 1984, “Saturation Nucleate Pool Boiling: A Simple Correlation,” 1st U.K. National Conference on the Heat Transfer, 2, pp. 785–793.
You do not currently have access to this content.