Abstract

Modified Watson's functions dependent on the Womersley Number, concerning a forced oscillatory pipe flow, are introduced to mathematically simply express the effective thermal conductivity, the tidal displacement, and the tidal work of fluid. Those three are developed into algebraic expressions giving the required electrical oscillating power and the necessary number of capillary tubes. The relative conductivity increase, the specific shaker driving power, and the specific tube bundle size are graphically shown in the figures for several fluids of interest to contribute to designing a heaterless liquid warmer.

1.
Chatwin
,
P. C.
,
1975
, “
On the Longitudinal Dispersion of Passive Contaminant in Oscillating Flows in Tubes
,”
J. Fluid Mech.
,
71
, pp.
513
527
.
2.
Watson
,
E. J.
,
1983
, “
Diffusion in Oscillatory Pipe Flow
,”
J. Fluid Mech.
,
133
, pp.
233
244
.
3.
Joshi
,
C. H.
,
Kamm
,
R. D.
,
Drazen
,
J. M.
, and
Slutsky
,
A. S.
,
1983
, “
An Experimental Study of Gas Exchange in Laminar Oscillatory Flow
,”
J. Fluid Mech.
,
133
, pp.
245
254
.
4.
Kurzweg
,
U. H.
, and
Jaeger
,
M. J.
,
1986
, “
Tuning Effect in Enhanced Gas Dispersion Under Oscillatory Conditions
,”
Phys. Fluids
,
29
(
4
), pp.
1324
1326
.
5.
Kurzweg
,
U. H.
, and
Jaeger
,
M. J.
,
1987
, “
Diffusional Separation of Gases by Sinusoidal Oscillations
,”
Phys. Fluids
,
30
(
4
), pp.
1023
1025
.
6.
Zhang
,
J. G.
,
Zegel
,
W. C.
, and
Kurzweg
,
U. H.
,
1996
, “
Enhanced Axial Dispersion in Oscillating Pipe Flow With Different Solute Concentrations at its Ends
,”
ASME J. Fluids Eng.
,
118
(
1
), pp.
160
165
.
7.
Kurzweg
,
U. H.
, and
Zhao
,
L. D.
,
1984
, “
Heat Transfer by High-Frequency Oscillations: A New Hydrodynamic Technique for Achieving Large Effective Thermal Conductivities
,”
Phys. Fluids
,
27
(
11
), pp.
2624
2627
.
8.
Kurzweg
,
U. H.
,
1985
, “
Enhanced Heat Conduction in Fluids Subjected to Sinusoidal Oscillations
,”
ASME J. Heat Transfer
,
107
(
2
), pp.
459
462
.
9.
Zhang
,
J. G.
, and
Kurzweg
,
U. H.
,
1991
, “
Numerical Simulation of Time-Dependent Heat Transfer in Oscillating Pipe Flow
,”
AIAA J. Thermophysics
,
5
(
3
), pp.
401
406
.
10.
Kaviany
,
M.
,
1990
, “
Performance of a Heat Exchanger Based on Enhanced Heat Diffusion in Fluids by Oscillation: Analysis
,”
ASME J. Heat Transfer
,
112
(
1
), pp.
49
55
.
11.
Kaviany
,
M.
, and
Reckker
,
M.
,
1990
, “
Performance of a Heat Exchanger Based on Enhanced Heat Diffusion in Fluids by Oscillation: Experimental
,”
ASME J. Heat Transfer
,
112
(
1
), pp.
56
63
.
12.
Nishio
,
S.
,
Shi
,
X. H.
, and
Zhang
,
W. M.
,
1995
, “
Oscillation-Induced Heat Transport: Heat Transport Characteristics Along Liquid-Columns of Oscillation-Controlled Heat Transport Tubes
,”
Int. J. Heat Mass Transfer
,
38
(
13
), pp.
2457
2470
.
13.
Rocha
,
L. A. O.
, and
Bejan
,
A.
,
2001
, “
Geometric Optimization of Periodic Flow and Heat Transfer in a Volume Cooled by Parallel Tubes
,”
ASME J. Heat Transfer
,
123
(
2
), pp.
233
239
.
14.
Katsuta, M., Nagata, K., Maruyama, Y., and Tsujimori, A., 1991, “Fundamental Characteristics of Heat Conduction Enhancement in Oscillatory Viscous Flow—Dream Pipe,” Proc. 3rd ASME/JSME Joint Thermal Engineering Conf., 3, pp. 69–74.
You do not currently have access to this content.