Analytical solutions are derived for evaporating flow in open rectangular microchannels having a uniform depth and a width that decreases along the channel axis. The flow generally consists of two sequential domains, an entry domain where the meniscus is attached to the top corners of the channel followed by a recession domain where the meniscus retreats along the sidewalls toward the channel bottom. Analytical solutions applicable within each domain are matched at their interface. Results demonstrate that tapered channels provide substantially better cooling capacity than straight channels of rectangular or triangular cross section, particularly under opposing gravitational forces. A multiplicity of arbitrarily tapered channels can be microfabricated in metals using LIGA, a process involving electrodeposition into a lithographically patterned mold.

1.
Faghri, A, 1995, Heat Pipe Science and Technology, Taylor and Francis Publishers, New York, NY.
2.
Stroes, G. R., Rohloff, T. J., and Catton, I., 1992, “An Experimental Study of the Capillary Forces in Rectangular Versus Triangular Channels,” Proceedings of the 28th National Heat Transfer Conference, HTD-Vol. 200, ASME, New York, pp. 1–7.
3.
Stroes
,
G. R.
, and
Catton
,
I.
,
1997
, “
An Experimental Study of the Capillary Performance of Triangular Versus Sinusoidal Channels
,”
ASME J. Heat Transfer
,
119
, pp.
851
853
.
4.
Sivaraman
,
A.
,
De
,
S.
, and
Dasgupta
,
S.
,
2002
, “
Experimental and Theoretical Study of Axial Dryout Point for Evaporation From V-Shaped Microgrooves
,”
Int. J. Heat Mass Transfer
,
45
, pp.
1535
1543
.
5.
Xu
,
X.
, and
Carey
,
V. P.
,
1990
, “
Film Evaporation From a Micro-Grooved Surface—An Approximate Heat Transfer Model and Its Comparison With Experimental Data
,”
J. Thermophysics
,
4
(
4
), pp.
512
520
.
6.
Catton
,
I.
, and
Stroes
,
G. R.
,
2002
, “
A Semi-Analytical Model to Predict the Capillary Limit of Heated Inclined Triangular Capillary Grooves
,”
ASME J. Heat Transfer
,
124
, pp.
162
168
.
7.
Ha
,
J. M.
, and
Peterson
,
G. P.
,
1996
, “
The Interline Heat Transfer of Evaporating Thin Films Along a Micro Grooved Surface
,”
ASME J. Heat Transfer
,
118
, pp.
747
755
.
8.
Peles
,
Y. P.
, and
Haber
,
S.
,
2000
, “
A Steady One Dimensional Model for Boiling Two Phase Flow in a Triangular Microchannel
,”
Int. J. Multiphase Flow
,
26
, pp.
1095
1115
.
9.
Becker
,
E. W.
,
Ehrfeld
,
W.
,
Hagmann
,
P.
,
Maner
,
A.
, and
Munchmeyer
,
D.
,
1986
, “
Fabrication of Microstructures With High Aspect Ratios and Great Structural Heights by Synchrotron Radiation Lithography, Galvanoforming and Plastic Moulding (LIGA Process)
,”
Microelectron. Eng.
,
4
, pp.
35
56
.
10.
Ehrfeld
,
W.
, and
Schmidt
,
A.
,
1998
, “
Recent Developments in Deep X-Ray Lithography
,”
J. Vac. Sci. Technol. B
,
16
(
6
), pp.
3526
3534
.
11.
Wayner
,
P. C.
,
1999
, “
Intermolecular Forces in Phase-Change Heat Transfer: 1998 Kern Award Review
,”
AIChE J.
,
45
(
10
), pp.
2055
2068
.
12.
Stephan
,
P. C.
, and
Busse
,
C. A.
,
1992
, “
Analysis of Heat Transfer Coefficient of Grooved Heat Pipe Evaporator Walls
,”
Int. J. Heat Mass Transfer
,
35
(
2
), pp.
383
391
.
13.
Schneider, G. E., and DeVos, R., 1980, “Nondimensional Analysis for the Heat Transport Capability of Axially Grooved Heat Pipes Including Liquid/Vapor Interaction,” AIAA Paper No. 80-0214.
14.
Tchikanda
,
S. W.
,
Nilson
,
R. H.
, and
Griffiths
,
S. K.
,
2003
, “
Modeling of Pressure and Shear Driven Flows in Open Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
47
, pp.
527
538
.
15.
Haskell, K. H., Vandevender, W. H., and Walton, E. L., 1980, “The SLATEC Mathematical Subroutine Library: SNL Implementation,” SAND80-2992, Sandia National Laboratories, Albuquerque, NM.
16.
Ayyaswamy
,
P. S.
,
Catton
,
I.
, and
Edwards
,
D. K.
,
1974
, “
Capillary Flow in Triangular Grooves
,”
ASME J. Appl. Mech.
,
41
, pp.
332
336
.
17.
Lin
,
L.
, and
Faghri
,
A.
,
1999
, “
Heat Transfer in Micro Region of a Rotating Miniature Heat Pipe
,”
Int. J. Heat Mass Transfer
,
42
, pp.
1363
1369
.
18.
Satre
,
V.
,
Zaghdoudi
,
M. C.
, and
Lallemand
,
M.
,
2002
, “
Effect of Interfacial Phenomena on Evaporative Heat Transfer in Micro Heat Pipes
,”
Int. J. Therm. Sci.
,
39
, pp.
498
504
.
19.
White, F. M., 1974, Viscous Fluid Flow, McGraw Hill, New York, NY.
You do not currently have access to this content.