The initial conditions of Madejski’s splat-quench solidification model for the impact of molten droplets on a solid substrate surface are modified by eliminating the adjustable parameter “ε” used in the estimation of initial spreading droplet radius. In the present model, the initial conditions are estimated after a definite time interval from the start of impact. Numerical predictions obtained from an improved Madejski model with different ε and the corresponding experimental measurements published in the literature are used for the comparison of the present model predictions. The improvements noted from the model predictions are reported.
Issue Section:
Technical Notes
Keywords:
Droplet,
Solidification,
Impingement,
rapid solidification,
splat cooling,
liquid metals,
drops
1.
Pawlowski, L., 1995, The Science and Engineering of Thermal Spray Coatings, Wiley, New York.
2.
Mostaghimi
, J.
, Pasandideh-Fard
, M.
, and Chandra
, S.
, 2002
, “Dynamics of Splat Formation in Plasma Spray Coating Process
,” Plasma Chem. Plasma Process.
, 22
, pp. 59
–84
.3.
Chandra
, S.
, and Avedisian
, C. T.
, 1991
, “On the Collision of a Droplet With a Solid Surface
,” Proc. R. Soc. London, Ser. A
, 432
, pp. 13
–41
.4.
Fukai
, J.
, Shiiba
, Y.
, Yamomoto
, T.
, Poulikakos
, D.
, Megaridis
, C. M.
, and Zhao
, Z.
, 1995
, “Wetting Effects on the Spreading of a Liquid Droplet Colliding With a Flat Surface: Experiment and Modeling
,” Phys. Fluids
, 7
, pp. 236
–247
.5.
Bussmann
, M.
, Mostaghimi
, J.
, and Chandra
, S.
, 1999
, “On a Three-Dimensional Volume Tracking Model of Droplet Impact
,” Phys. Fluids
, 11
, pp. 1406
–1417
.6.
Rioboo
, R.
, Marengo
, M.
, and Tropea
, C.
, 2002
, “Time Evolution of Liquid Drop Impact Onto Solid, Dry Surfaces
,” Exp. Fluids
, 33
, pp. 112
–124
.7.
Roisman
, I. V.
, Romain
, R.
, and Tropea
, C.
, 2002
, “Normal Impact of a Liquid Drop on a Dry Surface: Model for Spreading and Receding
,” Proc. R. Soc. London, Ser. A
, 458
, pp. 1411
–1430
.8.
Pasandideh-Fard
, M.
, Chandra
, S.
, Bhola
, R.
, and Mostaghimi
, J.
, 1998
, “Deposition of Tin Droplets on a Steel Plate: Simulations and Experiments
,” Int. J. Heat Mass Transfer
, 41
, pp. 2929
–2945
.9.
Amon
, C. H.
, Schmaltz
, K. S.
, Merz
, R.
, and Prinz
, F. B.
, 1996
, “Numerical and Experimental Investigation of Interface Bonding Via Substrate Remelting of an Impinging Molten Metal Droplet
,” ASME J. Heat Transfer
, 118
, pp. 164
–172
.10.
Zarzalejo
, L. J.
, Schmaltz
, K. S.
, and Amon
, C. H.
, 1999
, “Molten Droplet Solidification and Substrate Remelting in Microcasting Part I: Numerical Modeling and Experimental Verification
,” Heat Mass Transfer
, 34
, pp. 477
–485
.11.
Schmaltz
, K. S.
, Zarzalejo
, L. J.
, and Amon
, C. H.
, 1999
, “Molten Droplet Solidification and Substrate Remelting in Microcasting Part II: Parametric Study and Effect of Dissimilar Materials
,” Heat Mass Transfer
, 35
, pp. 17
–23
.12.
Pasandideh-Fard
, M.
, Chandra
, S.
, and Mostaghimi
, J.
, 2002
, “A Three-Dimensional Model of Droplet Impact and Solidification
,” Int. J. Heat Mass Transfer
, 45
, pp. 2229
–2242
.13.
Madejski
, J.
, 1976
, “Solidification of Droplets on a Cold Surface
,” Int. J. Heat Mass Transfer
, 19
, pp. 1009
–1013
.14.
Markworth
, A. J.
, and Saunders
, J. H.
, 1992
, “An Improved Velocity Field for the Madejski Splat-Quench Solidification Model
,” Int. J. Heat Mass Transfer
, 35
, pp. 1836
–1837
.15.
Delplanque
, J. P.
, and Rangel
, R. H.
, 1997
, “An Improved Model for Droplet Solidification on a Flat Surface
,” J. Mater. Sci.
, 32
, pp. 1519
–1530
.16.
Delplanque
, J. P.
, and Rangel
, R. H.
, 1998
, “A Comparison of Models, Numerical Simulation, and Experimental Results in Droplet Deposition Processes
,” Acta Mater.
, 46
, pp. 4925
–4933
.17.
Zhang
, H.
, 1999
, “Theoretical Analysis of Spreading and Solidification of Molten Droplet During Thermal Spray Deposition
,” Int. J. Heat Mass Transfer
, 42
, pp. 2499
–2508
.18.
Wan
, Y. P.
, Zhang
, H.
, Jiang
, X. Y.
, Sampath
, S.
, and Prasad
, V.
, 2001
, “Role of Solidification, Substrate Temperature and Reynolds Number on Droplet Spreading in Thermal Spray Deposition: Measurements and Modeling
,” ASME J. Heat Transfer
, 123
, pp. 382
–389
.19.
Haller
, K. K.
, Ventikos
, Y.
, Poulikakos
, D.
, and Monkewitz
, P.
, 2002
, “A Computational Study High Speed Liquid Droplet Impact
,” J. Appl. Phys.
, 92
, pp. 2821
–2828
.20.
Haller
, K. K.
, Ventikos
, Y.
, and Poulikakos
, D.
, 2003
, “Wave Structure in the Contact Line Region During High Speed Droplet Impact on a Surface: Solution of the Riemann Problem for the Stiffened Gas Equation of State
,” J. Appl. Phys.
, 93
, pp. 3090
–3097
.21.
Haller
, K. K.
, Ventikos
, Y.
, Poulikakos
, D.
, and Monkewitz
, P.
, 2003
, “Shock Wave Formation in Droplet Impact on a Rigid Surface: Lateral Liquid Motion and Multiple Wave Structure in the Contact Line Region
,” J. Fluid Mech.
, 490
, pp. 1
–14
.22.
Schiaffino
, S.
, and Sonin
, A. A.
, 1997
, “Motion and Arrest of a Molten Contact Line on a Cold Surface: An Experimental Study
,” Phys. Fluids
, 9
, pp. 2217
–2226
.23.
Aziz
, S. D.
, and Chandra
, S.
, 2000
, “Impact, Recoil and Splashing of Molten Metal Droplets
,” Int. J. Heat Mass Transfer
, 43
, pp. 2841
–2857
.24.
Rangel
, R. H.
, and Bian
, X.
, 1996
, “The Inviscid Stagnation-Flow Solidification Problem
,” Int. J. Heat Mass Transfer
, 39
, pp. 1591
–1602
.25.
Zhao
, Z.
, Poulikakos
, D.
, and Fukai
, J.
, 1996
, “Heat Transfer and Fluid Dynamics During the Collision of a Droplet on a Substrate: II—Experiments
,” Int. J. Heat Mass Transfer
, 39
, pp. 2791
–2802
.26.
Attinger
, D.
, Zhao
, Z.
, and Poulikakos
, D.
, 2000
, “An Experimental Study of Molten Microdroplet Surface Deposition and Solidification: Transient Behavior and Wetting Angle Dynamics
,” ASME J. Heat Transfer
, 122
, pp. 544
–556
.Copyright © 2004
by ASME
You do not currently have access to this content.