Heat conduction in micro- and nanoscale and in ultrafast processes may deviate from the predictions of the Fourier law, due to boundary and interface scattering, the ballistic nature of the transport, and the finite relaxation time of heat carriers. The transient ballistic-diffusive heat conduction equations (BDE) were developed as an approximation to the phonon Boltzmann equation (BTE) for nanoscale heat conduction problems. In this paper, we further develop BDE for multidimensional heat conduction, including nanoscale heat source term and different boundary conditions, and compare the simulation results with those obtained from the phonon BTE and the Fourier law. The numerical solution strategies for multidimensional nanoscale heat conduction using BDE are presented. Several two-dimensional cases are simulated and compared to the results of the transient phonon BTE and the Fourier heat conduction theory. The transient BTE is solved using the discrete ordinates method with a two Gauss-Legendre quadratures. Special attention has been paid to the boundary conditions. Compared to the cases without internal heat generation, the difference between the BTE and BDE is larger for the case studied with internal heat generation due to the nature of the ballistic-diffusive approximation, but the results from BDE are still significantly better than those from the Fourier law. Thus we conclude that BDE captures the characteristics of the phonon BTE with much shorter computational time.

1.
Taur, Y., Wann, Ch. H., and Frank, D. J., 1998, “25 nm CMOS Design Considerations,” Electron Devices Meeting, Tech. Digest., Intl., Dec. 6–9 pp. 789–792.
2.
Tien, C. L., Majumdar, A., and Gerner, F. M., 1998, Microscale Energy Transport, Taylor & Francis, Washington, DC.
3.
Lewis, E., 1984, Computational Methods of Neutron Transport, Wiley, New York.
4.
Modest, M. F., 2003, Radiative Heat Transfer, 2nd ed., Academic Press, New York.
5.
Tellier, C. R., and Tosser, A. J., 1982, Size Effects in Thin Films, Elsevier, Amsterdam.
6.
Goodson
,
K. E.
, and
Ju
,
Y. S.
,
1999
, “
Heat Conduction in Novel Electronic Films
,”
Annu. Rev. Mater. Sci.
,
29
, pp.
261
293
.
7.
Chen
,
G.
,
2000
, “
Phonon Heat Conduction in Low-Dimensional Structures
,”
Semicond. Semimetals
,
71
, pp.
203
259
.
8.
Chen
,
G.
,
1996
, “
Nonlocal and Nonequilibrium Heat Conduction in the Vincinity of Nanoparticles
,”
ASME J. Heat Transfer
,
118
, pp.
539
545
.
9.
Sverdrup
,
P. G.
,
Ju
,
Y. S.
, and
Goodson
,
K. E.
,
2001
, “
Sub-Continuum Simulations of Heat Conduction in Silicon-on-Insulator Transistors
,”
ASME J. Heat Transfer
,
123
, pp.
130
137
.
10.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
,
2003
, “
An Improved Computational Procedure for Sub-Micron Heat Conduction
,”
ASME J. Heat Transfer
,
125
, pp.
904
910
.
11.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
,
2003
, “
Simulation of Unsteady Small Heat Source Effects in Sub-Micron Heat Conduction
,”
ASME J. Heat Transfer
,
125
, pp.
896
903
.
12.
Chen
,
G.
,
2001
, “
Ballistic-Diffusive Heat Conduction Equations
,”
Phys. Rev. Lett.
,
86
, pp.
2297
2300
.
13.
Chen
,
G.
,
2002
, “
Ballistic-Diffusive Equations for Transient Heat Conduction From Nano to Macroscales
,”
ASME J. Heat Transfer
,
124
, pp.
320
328
.
14.
Yang, R. G., and Chen, G., 2001, “Two-Dimensional Nanoscale Heat Conduction Using Ballistic-Diffusive Equations,” Proc. of Int. Mechanical Engineering Conference and Exhibition, New York, 369, pp. 363–366.
15.
Yang, R. G., Chen, G., and Taur, Y., 2002, “Ballistic-Diffusive Equations for Multidimensional Nanoscale Heat Conduction,” Proc. of International Heat Transfer Conference, Grenoble, France, Elsevier, Paris, Vol. 1, pp. 579–584.
16.
Majumdar
,
A.
,
1993
, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME J. Heat Transfer
,
115
, pp.
7
16
.
17.
Chen
,
G.
,
2003
, “
Diffusion-Transmission Condition for Transport at Interfaces and Boundaries
,”
Appl. Phys. Lett.
,
82
, pp.
991
993
.
18.
Olfe
,
D. B.
,
1967
, “
A Modification of the Differential Approximation for Radiative Transfer
,”
AIAA J.
,
5
, pp.
638
643
.
19.
Modest
,
M. F.
,
1989
, “
The Modified Differential Approximation for Radiative Transfer in General Three-Dimensional Media
,”
J. Thermophys. Heat Transfer
,
3
, pp.
283
288
.
20.
Ramankutty
,
M.
, and
Crosbie
,
A.
,
1997
, “
Modified Discrete Ordinates Solution of Radiative Transfer in Two-Dimensional Rectangular Enclosures
,”
J. Quant. Spectrosc. Radiat. Transf.
,
57
, pp.
107
140
.
21.
Sakami
,
M.
, and
Charette
,
A.
,
2000
, “
Application of a Modified Discrete Ordinates Method to Two-Dimensional Enclosures od Irregular Geometery
,”
J. Quant. Spectrosc. Radiat. Transf.
,
64
, pp.
275
298
.
22.
Pomraning, G. C., 1973, The Equation of Radiation Hydrodynamics, Pergamon, New York.
23.
Chen
,
G.
,
1997
, “
Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures
,”
ASME J. Heat Transfer
,
119
, pp.
220
229
.
24.
Chen
,
G.
,
1998
, “
Thermal Conductivity and Ballistic Phonon Transport in Cross-Plane Direction of Superlattices
,”
Phys. Rev. B
,
57
, pp.
14958
14973
.
25.
Goodson
,
K. E.
,
1996
, “
Thermal Conductivity in Nonhomgeneous CVD Diamond Layers in Electronic Microstructures
,”
ASME J. Heat Transfer
,
118
, pp.
279
336
.
26.
Joshi
,
A. A.
, and
Majumdar
,
A.
,
1993
, “
Transient Ballistic and Diffusive Heat Transport in Thin Films
,”
J. Appl. Phys.
,
74
, pp.
31
39
.
27.
Siegel, R., and Howell, J. R., 2001, Thermal Radiation Heat Transfer, 4th ed, Taylor & Francis, Washington DC.
28.
Fiveland
,
W. A.
,
1987
, “
Discrete Ordinate Methods for Radiative Heat Transfer in Isotropically and Anisotropically Scattering Media
,”
ASME J. Heat Transfer
,
109
, pp.
809
812
.
29.
Truelove
,
J. S.
,
1987
, “
Discrete-Ordinate Solutions of the Radiation Transport Equation
,”
ASME J. Heat Transfer
,
109
, pp.
1048
1051
.
30.
Raithby
,
G. D.
,
1994
, “
Discussion of the Finite-Volume Method for Radiation, and Its Application Using 3D Unstructured Meshes
,”
Numer. Heat Transfer, Part B
,
35
, pp.
389
405
.
31.
Briggs
,
L. L.
,
Miller
,
W. F.
, and
Lewis
,
E. E.
,
1975
, “
Ray-Effect Mitigation in Discrete Ordinate-Like Angular Finite Element Approximations in Neutron Transport
,”
Nucl. Sci. Eng.
,
57
, pp.
205
217
.
32.
Chai
,
J. C.
,
Lee
,
H. S.
, and
Patankar
,
S. V.
,
1993
, “
Ray Effect and False Scattering in the Discrete Ordinates Method
,”
Numer. Heat Transfer, Part B
,
24
, pp.
373
389
.
33.
Coelho
,
P.
,
2002
, “
The Role of Ray Effect and False Scattering on the Accuracy of the Standard and Modified Discrete Ordinates Methods
,”
J. Quant. Spectrosc. Radiat. Transf.
,
73
, pp.
231
238
.
34.
Murthy
,
J.
, and
Mathur
,
S.
,
1998
, “
Finite Volume Method for Radiative Heat Transfer Using Unstructured Meshes
,”
J. Thermophys. Heat Transfer
,
12
, pp.
313
321
.
35.
Fiveland, W. A., 1991, “The Selection of Discrete Ordinate Quadrature Sets for Anisotropic Scattering,” Fundamentals of Radiation Heat Transfer, ASME, New York, HTD-Vol. 160, pp. 89–96.
36.
Chai
,
J. C.
,
Patankar
,
S. V.
, and
Lee
,
H. S.
,
1994
, “
Evaluation of Spatial Differencing Practices for the Discrete-Ordinates Method
,”
J. Thermophys. Heat Transfer
,
8
, pp.
140
144
.
You do not currently have access to this content.