Fluid flows along a shallow cavity. A numerical study was conducted to investigate the effects of heating the floor of the cavity. In order to draw a broader perspective, a parametric analysis was carried out, and the influences of the following parameters were investigated: (i) cavity aspect ratio, (ii) turbulence level of the oncoming flow, and (iii) Reynolds number. A finite-difference computer code was used to integrate the incompressible Reynolds-averaged Navier–Stokes equations. The code, recently developed by the authors, is of the pressure-based type, the grid is collocated, and artificial smoothing terms are added to control eventual odd–even decoupling and nonlinear instabilities. The parametric study revealed and helped to clarify many important physical aspects. Among them, the so called “vortexes encapsulation,” a desirable effect, because the capsule works well as a kind of fluidic thermal insulator. Another important point is related to the role played by the turbulent diffusion in the heat transfer mechanism.

1.
Gomes
,
D. G.
, 1998, “
Optimization of Flat Plate Solar Collectors
,” Master thesis dissertation, TIA—Technological Institute of Aeronautics, São José dos Campos, SP, Brazil (in Portuguese).
2.
Zdanski
,
P. S. B.
,
Ortega
,
M. A.
and
Fico
Jr.,
N. G. C. R.
, 2002, “
Convection Effects in Flows over Cavities of High Aspect Ratios
,” AIAA Paper 2002-3301.
3.
Zdanski
,
P. S. B.
,
Ortega
,
M. A.
,
Fico
Jr.,
N. G. C. R.
, 2003, “
Numerical Study of the Flow Over Shallow Cavities
,”
Int. J. Comput. Fluid Dyn.
1061-8562,
32
, pp.
953
974
.
4.
Zdanski
,
P. S. B.
,
Ortega
,
M. A.
, and
Fico
Jr.,
N. G. C. R.
, 2003, “
A Novel Algorithm for the Incompressible Navier-Stokes Equations
,” AIAA Paper 2003-0434.
5.
Richards
,
R. F.
,
Young
,
M. F.
, and
Haiad
,
J. C.
, 1987, “
Turbulent Forced Convection Heat Transfer from a Bottom Heated Open Surface Cavity
,”
Int. J. Heat Mass Transfer
0017-9310,
30
, pp.
2281
2287
.
6.
Aung
,
W.
, 1983, “
An Interferometric Investigation of Separated Forced Convection in Laminar Flow Past Cavities
,”
ASME J. Heat Transfer
0022-1481,
105
, pp.
505
512
.
7.
Matos
,
A.
,
Pinho
,
F. A. A.
, and
Silveira-Neto
,
A. S.
, 1999, “
Large-Eddy Simulation of Turbulent Flow Over a Two-Dimensional Cavity with Temperature Fluctuations
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
49
59
.
8.
Launder
,
B. E.
, and
Spalding
,
D. B.
, 1974, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
3
, pp.
269
289
.
9.
Hwang
,
C. B.
, and
Lin
,
C. A.
, 1998, “
Improved Low-Reynolds-Number k-ε̃ Model Based on Direct Numerical Simulation Data
,”
AIAA J.
0001-1452,
36
, pp.
38
43
.
10.
Beam
,
R. M.
, and
Warming
,
R. F.
, 1978, “
An Implicit Factored Scheme for the Compressible Navier-Stokes Equations
,”
AIAA J.
0001-1452,
16
, pp.
393
401
.
11.
Mansour
,
N. M.
,
Kim
,
J.
, and
Moin
,
P.
, 1983, “
Computation of Turbulent Flows Over a Backward-Facing Step
,” Nasa Technical Memorandum, 85851.
12.
Mansour
,
N. M.
,
Kim
,
J.
, and
Moin
,
P.
, 1988, “
Reynolds Stress and Dissipation Rate Budgets in Turbulent Channel Flow
,”
J. Fluid Mech.
0022-1120,
194
, pp.
15
44
.
13.
Wilcox
,
D. C.
, 1998,
Turbulence Modeling for CFD
, 2nd ed.,
DCW Industries
, La Canãda, CA.
14.
Kader
,
B. A.
, 1981, “
Temperature and Concentration Profiles in Fully Turbulent Boundary Layers
,”
Int. J. Heat Mass Transfer
0017-9310,
24
, pp.
1541
1544
.
15.
Patel
,
V. C.
,
Rodi
,
W.
, and
Scheurer
,
G.
, 1985, “
Turbulence Models for Near-Wall and Low Reynolds Number Flows
,”
AIAA J.
0001-1452,
23
, pp.
1308
1319
.
16.
Vogel
,
J. C.
, and
Eaton
,
J. K.
, 1985, “
Combined Heat Transfer and Fluid Dynamics Measurements Downstream of a Backward-Facing Step
,”
ASME J. Heat Transfer
0022-1481,
107
, pp.
922
929
.
17.
Silveira-Neto
,
A.
,
Grand
,
D.
,
Métais
,
O.
, and
Lesieur
,
M.
, 1993, “
Numerical Investigation of the Coherent Vortices in Turbulence Behind a Backward-Facing Step
,”
J. Fluid Mech.
0022-1120,
256
, pp.
1
25
.
18.
Abe
,
K.
,
Nagano
,
Y.
, and
Kondoh
,
T. A.
, 1995, “
A New Turbulence Model for Predicting Fluid Flow and Heat Transfer in Separating and Reattaching Flows
,”
Int. J. Heat Mass Transfer
0017-9310,
38
, pp.
1467
1481
.
19.
Rizzi
,
A.
, and
Vos
,
J.
, 1998, “
Towards Establishing Credibility in Computational Fluid Dynamics Simulations
,”
AIAA J.
0001-1452,
36
, pp.
668
675
.
20.
Strickwerda
,
J. C.
, 1989,
Finite Difference Schemes and Partial Differential Equations
,
Wadsworth
, New York.
21.
Arpaci
,
V. S.
, and
Larsen
,
P. S.
, 1984,
Convection Heat Transfer
,
Prentice–Hall
, New Jersey.
You do not currently have access to this content.