Melt pool geometry and thermal behavior control are essential in obtaining consistent building performances, such as geometrical accuracy, microstructure, and residual stress. In this paper, a three dimensional model is developed to predict the thermal behavior and geometry of the melt pool in the laser material interaction process. The evolution of the melt pool and effects of the process parameters are investigated through the simulations with stationary and moving laser beam cases. The roles of the convection and surface deformation on the heat dissipation and melt pool geometry are revealed by dimensionless analysis. The melt pool shape and fluid flow are considerably affected by interfacial forces such as thermocapillary force, surface tension, and recoil vapor pressure. Quantitative comparison of interfacial forces indicates that recoil vapor pressure is dominant under the melt pool center while thermocapillary force and surface tension are more important at the periphery of the melt pool. For verification purposes, the complementary metal oxide semiconductor camera has been utilized to acquire the melt pool image online and the melt pool geometries are measured by cross sectioning the samples obtained at various process conditions. Comparison of the experimental data and model prediction shows a good agreement.

1.
Rosenthal
,
D.
, 1946, ”
The Theory of Moving Source of Heat and its Application to Metal Treatment
,”
Trans. ASME
0097-6822,
68
, pp.
849
866
.
2.
Doumanidis
,
C.
, and
Kwak
,
Y. M.
, 2001, “
Geometry Modeling and Control by Infrared and Laser Sensing in Thermal Manufacturing with Material Deposition
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
, pp.
45
52
.
3.
Kaplan
,
A. F. H.
, and
Groboth
,
G.
, 2001, “
Process Analysis of Laser Beam Cladding
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
, pp.
609
613
.
4.
Tsai
,
F. R.
,
Elijah
,
K. A.
Jr.
, 2002, “
Modeling of Conduction Mode Laser Welding Process for Feedback Control
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
122
, pp.
420
428
.
5.
Hu
,
D.
,
Mei
,
H.
, and
Kovacevic
,
R.
, 2002, “
Improving Solid Freeform Fabrication by Laser-based Additive Manufacturing
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
216
, pp.
1253
1264
.
6.
Vasinonta
,
A.
,
Beuth
,
J. L.
, and
Griffith
,
M. L.
, 2001, “
A Process Map for Consistent Build Conditions in the Solid Freeform Fabrication of Thin-Walled Structures
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
, pp.
615
622
.
7.
Cline
,
H. E.
, and
Anthony
,
T. R.
, 1977, “
Heat Treating and Melting Material with a Scanning Laser or Electron Beam
,”
J. Appl. Phys.
0021-8979,
48
, pp.
2895
3900
.
8.
Mazumder
J.
, 1991, ”
Overview of Melt Dynamics in Laser Processing
,”
Opt. Eng.
0091-3286,
30
, pp.
1208
1219
.
9.
Mahrle
,
A.
, and
Schmidt
,
J.
, 2002, “
The Influence of Fluid Flow Phenomena on the Laser Beam Welding Process
,”
Int. J. Heat Fluid Flow
0142-727X,
23
, pp.
288
297
.
10.
Lange
,
D. F.
, and
Postma
,
S.
, 2003, “
Modeling and Observation of Laser Welding: the Effect of Latent Heat
,” ICALEO, Jacksonville, FL.
11.
He
,
X.
,
Fuerschbach
,
P. W.
, and
DebRoy
,
T.
, 2003, “
Heat Transfer and Fluid Flow during Laser Spot Welding of 304 Stainless Steel
,”
J. Phys. D
0022-3727
36
, pp.
1388
1398
.
12.
Voelkel
,
D. D.
, and
Mazumder
,
J.
, 1990, “
Visualization and Dimensional Measurement of the Laser Weld Pool
,” ICALEO, pp.
422
429
.
13.
Lim
,
D. C.
,
Cho
,
Y. B.
, and
Gweon
,
D. G.
, 1998, “
A Robust in Process Monitoring of Pulsed Laser Spot Welding Using a Point Infrared Sensor
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
212
, pp.
241
250
.
14.
Beersiek
,
J.
, 2002, “
New Aspects of Monitoring with a CMOS Camera for Laser Materials Processing
,” ICALEO, Scottsdale, AZ.
15.
Bicknell
,
A.
, 1994, ”
Infrared Sensor for Top Face Monitoring of Weld Pools
,”
Meas. Sci. Technol.
0957-0233
5
, pp.
371
387
.
16.
Romer
,
G. W.
,
Hoeksma
,
M.
, and
Meijer
,
J.
, 1997, ”
Industrial Imaging Controls Laser Surface Treatment
,”
Photonics Spectra
0731-1230,
31
, pp.
104
109
.
17.
Beersiek
,
J.
, 2001, ”
A CMOS Camera as a Tool for Process Analysis Not Only for Laser Beam Welding
,” ICALEO, Jacksonville, FL.
18.
Hu
,
D.
,
Labudovic
,
M.
, and
Kovacevic
,
R.
, 1999, “
On Line Sensing of Laser Surface Modification Process by Computer Vision
,”
Proceedings of ASW Ninth International Conference on Computer Technology in Welding
, pp.
417
424
.
19.
Bennon
,
W.
, and
Incropera
,
F.
, 1987, “
A Continuum Model for Momentum, Heat, and Species Transport in Binary Solid-Liquid Phase Change Systems I: Model Formulation
,”
Int. J. Heat Mass Transfer
0017-9310,
30
, pp.
2161
2170
.
20.
Bennon
,
W.
, and
Incropera
,
F.
, 1987, “
A Continuum Model for Momentum, Heat, and Species Transport in Binary Solid-Liquid Phase Change Systems-II
,”
Int. J. Heat Mass Transfer
0017-9310,
30
, pp.
2171
2187
.
21.
Sethian
,
J. A.
, 1999,
Level Set Method and Fast Marching Methods
, 2nd ed.,
Cambridge University Press
, Cambridge, UK
22.
Ki
,
H.
,
Mohanty
,
P. S.
, and
Mazumder
,
J.
, 2002, “
Modeling of Laser Keyhole Welding: Part I. Mathematical Modeling, Numerical Methodology, Role of Recoil Pressure, Multiple Reflections and Free Surface Evolution
,”
Metall. Mater. Trans. A
1073-5623
33
, pp.
1817
1830
.
23.
Afanasiev
,
Y. V.
, and
Krokhin
,
O. N.
, 1967,
Sov. Phys. JETP
0038-5646,
25
, p.
639
.
24.
Semak
,
V.
, and
Matsunawa
,
A.
, 1997, “
The Role of Recoil Pressure in Energy Balance During Laser Materials Processing
,”
J. Phys. D
0022-3727
30
, pp.
2541
2552
.
25.
Shu
,
C. W.
, and
Osher
,
S. J.
, 1989, “
Efficient Implementation of Essentially Nonoscillatory Shock Capturing Schemes II
,”
J. Comput. Phys.
0021-9991,
83
, pp.
32
78
.
26.
Sussman
,
M.
,
Fatemi
,
E.
,
Smereka
,
P.
, and
Osher
S.
, 1998, “
An Improved Level Set Method for Incompressible Two-Phase Flows
,”
Comput. Fluids
0045-7930,”
27
, pp.
663
680
.
27.
Wang
,
Y.
, and
Tsai
,
H. L.
, 2001, “
Effect of Surface Active Elements on Weld Pool Fluid Flow and Weld Penetration in Gas Metal Arc Welding
,”
Metall. Mater. Trans. B
1073-5615,
32B
. pp.
501
515
.
You do not currently have access to this content.