Carbon nanotubes (CNTs) have received much recent research interest for thermal management applications due to their extremely high thermal conductivity. An advanced thermal interface structure made of two opposing, partially overlapped CNT arrays is designed for thermally connecting two contact surfaces. The performance of this interface structure is thermally characterized using diffraction-limited infrared microscopy. Significant temperature discontinuities are found at the CNT-CNT contact region, which indicates a large thermal resistance between CNTs. Due to this intertube resistance, the thermal performance of the CNT-based interface structure is far below expectation (with a thermal resistance value about ).
1.
Iijima
, S.
, 1991, “Helical Microtubules of Graphitic Carbon
,” Nature (London)
0028-0836, 354
, pp. 56
–58
.2.
Hone
, J.
, Whitney
, M.
, Piskoti
, C.
, and Zettl
, A.
, 1999, “Thermal Conductivity of Single-Walled Nanotubes
,” Phys. Rev. B
0163-1829, 59
(4
), pp. R2514
–R2516
.3.
Kim
, P.
, Shi
, L.
, Majumdar
, A.
, and McEuen
, P. L.
, 2001, “Thermal Transport Measurements of Individual Multiwall Nanotubes
,” Phys. Rev. Lett.
0031-9007, 87
, pp. 215502
(1-4).4.
Yu
, C.
, Jiang
, W.
, Hanrath
, T.
, Kim
, D.
, Yao
, Z.
, Korgel
, B.
, Shi
, L.
, Wang
, Z. L.
, Li
, D.
, and Majumdar
, A.
, 2003, “Thermal and Thermoelectric Measurements of Low Dimensional Nanostructures
,” Proc. ASME Summer Heat Transfer Conference, HT2003-47263, pp. 1
–6
.5.
Berber
, S.
, Kwon
, Y. K.
, and Tomanek
, D.
, 2000, “Unusually High Thermal Conductivity of Carbon Nanotubes
,” Phys. Rev. Lett.
0031-9007, 84
(20
), pp. 4613
–4617
.6.
Choi
, S. U. S.
, Zhang
, Z. G.
, Yu
, W.
, Lockwood
, F. E.
, and Grulke
, E. A.
, 2001, “Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,” Appl. Phys. Lett.
0003-6951, 79
(14
), pp. 2252
–2254
.7.
Biercuk
, M. J.
, Llaguno
, M. C.
, Radosavljevic
, M.
, Hyun
, J. K.
, Johnsond
, A. T.
, and Fischer
, J. E.
, 2002, “Carbon Nanotube Composites for Thermal Management
,” Appl. Phys. Lett.
0003-6951, 80
(15
), pp. 2667
–2769
.8.
Hu
, X.
, Jiang
, L.
, and Goodson
, K. E.
, 2004, “Thermal Conductance Enhancement of Particle-Filled Thermal Interface Materials Using Carbon Nanotube Inclusions
,” Proc. 9th Intersociety Conf on Thermal and Thermo-Mechanical Phenomena in Electronic System
, Vol. 1
, pp. 63
–69
.9.
Huxtable
, S. T.
, Cahill
, D. G.
, Shenogin
, S.
, Xue
, L. P.
, Ozisik
, R.
, Barone
, P.
, Usrey
, M.
, Strano
, M. S.
, Siddons
, G.
, Shim
, M.
, and Keblinski
, P.
, 2003, “Interfacial Heat Flow in Carbon Nanotube Suspensions
,” Nat. Mater.
1476-1122, 2
(11
), pp. 731
–734
.10.
Nan
, C. W.
, Liu
, G.
, Lin
, Y. H.
, and Li
, M.
, 2004, “Interface Effect on Thermal Conductivity of Carbon Nanotube Composites
,” Appl. Phys. Lett.
0003-6951, 85
(16
), pp. 3549
–3551
.11.
Shenogin
, S.
, Xue
, L. P.
, Ozisik
, R.
, Keblinski
, P.
, and Cahill
, D. G.
, 2004, “Role of Thermal Boundary Resistance on The Heat Flow in Carbon-Nanotube Composites
,” J. Appl. Phys.
0021-8979, 95
(12
), pp. 8136
–8144
.12.
Cao
, A.
, Dickrell
, P. L.
, Sawyer
, W. G.
, Ghasemi-Nejhad
, M. N.
, and Ajayan
, P. M.
, 2005, “Super-Compressible Foamlike Carbon Nanotube Films
,” Science
0036-8075, 310
, pp. 1307
–1310
.13.
Montgometry
, S. W.
, and Holalkere
, V. R.
, 2003, “Carbon Nanotube Thermal Interface Structures
,” US Patent Publication # US20030117770.14.
Xu
, J.
, and Fisher
, T. S.
, 2006, “Enhanced Thermal Contact Conductance Using Carbon Nanotube Arrays
,” IEEE Trans. Compon. Packag. Technol.
1521-3331, 29
(2
), pp. 261
–267
.15.
Ngo
, Q. X.
, Cruden
, B. A.
, Cassell
, A. M.
, Sims
, G.
, Li
, J.
, Meyyappan
, M.
, and Yang
, C. Y.
, 2004, “Nano-Engineered Multiwall Carbon Nanotube-Copper Composite Thermal Interface Material for Efficient Heat Conduction
,” J. Miner., Met., Mater.
, 56
(11
), pp. 153
–154
.16.
Chuang
, H. F.
, Cooper
, S. M.
, Meyyappan
, M.
, and Cruden
, B. A.
, 2004, “Improvement of Thermal Contact Resistance by Carbon Nanotubes and Nanofibers
,” J. Nanosci. Nanotechnol.
1533-4880, 4
(8
), pp. 964
–967
.17.
Sample
, J. L.
, Rebello
, K. J.
, Saffarian
, H.
, and Osiander
, R.
, 2004, “Carbon Nanotube Coatings for Thermal Control
,” Proc. 9th Intersociety Conf on Thermal and Thermomechanical Phenomena in Electronic System
, Las Vegas, NV.18.
Hu
, X. J.
, Padilla
, A. A.
, Xu
, J.
, Fisher
, T. S.
, and Goodson
, K. E.
, 2006, “3-Omega Measurements of Vertically Oriented Carbon Nanotubes on Silicon
,” ASME J. Heat Transfer
0022-1481, 128
, pp. 1109
–1113
.19.
Tong
, T.
, Zhao
, Y.
, Delzeit
, L.
, Kashani
, A.
, and Majumdar
, A.
, 2004, “Multiwalled Carbon Nanotube/nanofiber Arrays as Conductive and Dry Adhesive Interface Materials
,” Proc. Integrated Nanosystems:Design, Synthesis & Applications Conf.20.
Hu
, X.
, Jiang
, L.
, and Goodson
, K. E.
, 2004, “Thermal Characterization of Eutectic Alloy Thermal Interface Materials with Void-like Inclusions
,” Proc. 20th IEEE Semiconductor Thermal Measurement and Management Symposium
, San Jose, CA, pp. 98
–103
.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.