Carbon nanotubes (CNTs) have received much recent research interest for thermal management applications due to their extremely high thermal conductivity. An advanced thermal interface structure made of two opposing, partially overlapped CNT arrays is designed for thermally connecting two contact surfaces. The performance of this interface structure is thermally characterized using diffraction-limited infrared microscopy. Significant temperature discontinuities are found at the CNT-CNT contact region, which indicates a large thermal resistance between CNTs. Due to this intertube resistance, the thermal performance of the CNT-based interface structure is far below expectation (with a thermal resistance value about 3.8×104Km2W).

1.
Iijima
,
S.
, 1991, “
Helical Microtubules of Graphitic Carbon
,”
Nature (London)
0028-0836,
354
, pp.
56
58
.
2.
Hone
,
J.
,
Whitney
,
M.
,
Piskoti
,
C.
, and
Zettl
,
A.
, 1999, “
Thermal Conductivity of Single-Walled Nanotubes
,”
Phys. Rev. B
0163-1829,
59
(
4
), pp.
R2514
R2516
.
3.
Kim
,
P.
,
Shi
,
L.
,
Majumdar
,
A.
, and
McEuen
,
P. L.
, 2001, “
Thermal Transport Measurements of Individual Multiwall Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
87
, pp.
215502
(1-4).
4.
Yu
,
C.
,
Jiang
,
W.
,
Hanrath
,
T.
,
Kim
,
D.
,
Yao
,
Z.
,
Korgel
,
B.
,
Shi
,
L.
,
Wang
,
Z. L.
,
Li
,
D.
, and
Majumdar
,
A.
, 2003, “
Thermal and Thermoelectric Measurements of Low Dimensional Nanostructures
,” Proc. ASME Summer Heat Transfer Conference, HT2003-47263, pp.
1
6
.
5.
Berber
,
S.
,
Kwon
,
Y. K.
, and
Tomanek
,
D.
, 2000, “
Unusually High Thermal Conductivity of Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
84
(
20
), pp.
4613
4617
.
6.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
, 2001, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
0003-6951,
79
(
14
), pp.
2252
2254
.
7.
Biercuk
,
M. J.
,
Llaguno
,
M. C.
,
Radosavljevic
,
M.
,
Hyun
,
J. K.
,
Johnsond
,
A. T.
, and
Fischer
,
J. E.
, 2002, “
Carbon Nanotube Composites for Thermal Management
,”
Appl. Phys. Lett.
0003-6951,
80
(
15
), pp.
2667
2769
.
8.
Hu
,
X.
,
Jiang
,
L.
, and
Goodson
,
K. E.
, 2004, “
Thermal Conductance Enhancement of Particle-Filled Thermal Interface Materials Using Carbon Nanotube Inclusions
,”
Proc. 9th Intersociety Conf on Thermal and Thermo-Mechanical Phenomena in Electronic System
, Vol.
1
, pp.
63
69
.
9.
Huxtable
,
S. T.
,
Cahill
,
D. G.
,
Shenogin
,
S.
,
Xue
,
L. P.
,
Ozisik
,
R.
,
Barone
,
P.
,
Usrey
,
M.
,
Strano
,
M. S.
,
Siddons
,
G.
,
Shim
,
M.
, and
Keblinski
,
P.
, 2003, “
Interfacial Heat Flow in Carbon Nanotube Suspensions
,”
Nat. Mater.
1476-1122,
2
(
11
), pp.
731
734
.
10.
Nan
,
C. W.
,
Liu
,
G.
,
Lin
,
Y. H.
, and
Li
,
M.
, 2004, “
Interface Effect on Thermal Conductivity of Carbon Nanotube Composites
,”
Appl. Phys. Lett.
0003-6951,
85
(
16
), pp.
3549
3551
.
11.
Shenogin
,
S.
,
Xue
,
L. P.
,
Ozisik
,
R.
,
Keblinski
,
P.
, and
Cahill
,
D. G.
, 2004, “
Role of Thermal Boundary Resistance on The Heat Flow in Carbon-Nanotube Composites
,”
J. Appl. Phys.
0021-8979,
95
(
12
), pp.
8136
8144
.
12.
Cao
,
A.
,
Dickrell
,
P. L.
,
Sawyer
,
W. G.
,
Ghasemi-Nejhad
,
M. N.
, and
Ajayan
,
P. M.
, 2005, “
Super-Compressible Foamlike Carbon Nanotube Films
,”
Science
0036-8075,
310
, pp.
1307
1310
.
13.
Montgometry
,
S. W.
, and
Holalkere
,
V. R.
, 2003, “
Carbon Nanotube Thermal Interface Structures
,” US Patent Publication # US20030117770.
14.
Xu
,
J.
, and
Fisher
,
T. S.
, 2006, “
Enhanced Thermal Contact Conductance Using Carbon Nanotube Arrays
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
29
(
2
), pp.
261
267
.
15.
Ngo
,
Q. X.
,
Cruden
,
B. A.
,
Cassell
,
A. M.
,
Sims
,
G.
,
Li
,
J.
,
Meyyappan
,
M.
, and
Yang
,
C. Y.
, 2004, “
Nano-Engineered Multiwall Carbon Nanotube-Copper Composite Thermal Interface Material for Efficient Heat Conduction
,”
J. Miner., Met., Mater.
,
56
(
11
), pp.
153
154
.
16.
Chuang
,
H. F.
,
Cooper
,
S. M.
,
Meyyappan
,
M.
, and
Cruden
,
B. A.
, 2004, “
Improvement of Thermal Contact Resistance by Carbon Nanotubes and Nanofibers
,”
J. Nanosci. Nanotechnol.
1533-4880,
4
(
8
), pp.
964
967
.
17.
Sample
,
J. L.
,
Rebello
,
K. J.
,
Saffarian
,
H.
, and
Osiander
,
R.
, 2004, “
Carbon Nanotube Coatings for Thermal Control
,”
Proc. 9th Intersociety Conf on Thermal and Thermomechanical Phenomena in Electronic System
, Las Vegas, NV.
18.
Hu
,
X. J.
,
Padilla
,
A. A.
,
Xu
,
J.
,
Fisher
,
T. S.
, and
Goodson
,
K. E.
, 2006, “
3-Omega Measurements of Vertically Oriented Carbon Nanotubes on Silicon
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
1109
1113
.
19.
Tong
,
T.
,
Zhao
,
Y.
,
Delzeit
,
L.
,
Kashani
,
A.
, and
Majumdar
,
A.
, 2004, “
Multiwalled Carbon Nanotube/nanofiber Arrays as Conductive and Dry Adhesive Interface Materials
,” Proc. Integrated Nanosystems:Design, Synthesis & Applications Conf.
20.
Hu
,
X.
,
Jiang
,
L.
, and
Goodson
,
K. E.
, 2004, “
Thermal Characterization of Eutectic Alloy Thermal Interface Materials with Void-like Inclusions
,”
Proc. 20th IEEE Semiconductor Thermal Measurement and Management Symposium
, San Jose, CA, pp.
98
103
.
You do not currently have access to this content.