A new design concept is presented to increase the adiabatic effectiveness of film cooling from a row of film-cooling holes. Instead of shaping the geometry of each hole; placing tabs, struts, or vortex generators in each hole; or creating a trench about a row of holes, this study proposes a geometry modification upstream of the holes to modify the approaching boundary-layer flow and its interaction with the film-cooling jets. Computations, based on the ensemble-averaged Navier–Stokes equations closed by the realizable kε turbulence model, were used to examine the usefulness of making the surface just upstream of a row of film-cooling holes into a ramp with a backward-facing step. The effects of the following parameters were investigated: angle of the ramp (8.5deg, 10deg, 14deg), distance between the backward-facing step and the row of film-cooling holes (0.5D,D), blowing ratio (0.36, 0.49, 0.56, 0.98), and “sharpness” of the ramp at the corners. Results obtained show that an upstream ramp with a backward-facing step can greatly increase surface adiabatic effectiveness. The laterally averaged adiabatic effectiveness with a ramp can be two or more times higher than without the ramp by increasing upstream and lateral spreading of the coolant.

1.
Suo
,
M.
, 1985,
Turbine Cooling, Aerothermodynamics of Aircraft Engine Components
,
G. C.
Oates
, ed.,
AIAA
,
New York
, pp.
275
328
.
2.
Metzger
,
D. E.
, 1985, “
Cooling Techniques for Gas Turbine Airfoils
,” AGARD CP 390, pp.
1
12
.
3.
Moffat
,
R. J.
, 1987, “
Turbine Blade Heat Transfer
,”
Heat Transfer and Fluid Flow in Rotating Machinery
,
W. J.
Yang
, ed.,
Hemisphere
,
Washington, D.C.
, pp.
1
24
.
4.
Shih
,
T. I.-P.
, and
Chyu
,
M.
, 2006, Guest eds., “
Special Section on Turbine Science and Technology
,”
J. Propul. Power
0748-4658,
22
(
2
), pp.
225
396
.
5.
Goldstein
,
R. J.
, 1971, “
Film Cooling
,”
Advances in Heat Transfer
,
Academic
,
New York
, Vol.
7
, pp.
321
379
.
6.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
, 2000,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
New York
.
7.
Goldstein
,
R.
, ed., 2001, Heat Transfer in Gas Turbine Systems, Annals of the New York Academy of Sciences, Vol.
934
.
8.
Sundén
,
B.
, and
Faghri
,
M.
, 2001, eds.,
Heat Transfer in Gas Turbines
,
WIT
,
Ashurst, Southhampton, UK
.
9.
Shih
,
T. I.-P.
, and
Sultanian
,
B.
, 2001, “
Computations of Internal and Film Cooling
,”
Heat Transfer in Gas Turbines
,
B.
Sundén
and
M.
Faghri
, eds.,
WIT
,
Ashurst, Southhampton, UK
, Chap. 5, pp.
175
225
.
10.
Bogard
,
D. G.
, and
Thole
,
K. A.
, 2006, “
Gas Turbine Film Cooling
,”
J. Propul. Power
0748-4658,
22
(
2
), pp.
249
270
.
11.
Kercher
,
D. M.
, 2003, “
Film-Cooling Bibliography: 1940–2002
,” Ipswich, MA, February 28.
12.
Kercher
,
D. M.
, 2005, “
Film-Cooling Bibliography Addendum: 1999–2004
,” Ipswich, MA, April 19.
13.
Kelso
,
R. M.
,
Lim
,
T. T.
, and
Perry
,
A. E.
, 1996, “
An Experimental Study of Round Jets in Cross-Flow
,”
J. Fluid Mech.
0022-1120,
306
, pp.
111
144
.
14.
Haven
,
B. A.
,
Yamagata
,
D. K.
,
Kurosaka
,
M.
,
Yamawaki
,
S.
, and
Maya
,
T.
, 1997, “
Anti-Kidney Pair of Vortices in Shaped Holes and Their Influence on Film Cooling Effectiveness
,” ASME Paper No. 97-GT-45.
15.
Hyams
,
D. G.
,
McGovern
,
K. T.
, and
Leylek
,
J. H.
, 1997, “
Effects of Geometry on Slot-Jet Film Cooling Performance
,” ASME Paper No. 96-GT-187.
16.
Bunker
,
R. S.
, 2005, “
A Review of Shaped Hole Turbine Cooling Technology
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
441
453
.
17.
Haven
,
B. A.
, and
Kurosaka
,
M.
, 1996, “
Improved Jet Coverage Through Vortex Cancellation
,”
AIAA J.
0001-1452,
34
(
11
), pp.
2443
2444
.
18.
Zaman
,
K. B. M. Q.
, and
Foss
,
J. K.
, 1997, “
The Effects of Vortex Generators on a Jet in a Cross-Flow
,”
Phys. Fluids
0031-9171,
9
(
1
), pp.
106
114
.
19.
Zaman
,
K. B. M. Q.
, 1998, “
Reduction of a Jet Penetration in a Cross-Flow by Using Tabs
,” AIAA Paper No. 98–3276.
20.
Ekkad
,
S. V.
,
Nasir
,
H.
, and
Acharya
,
S.
2003, “
Flat Surface Film Cooling from Cylindrical Holes with Discrete Tabs
,”
J. Thermophys. Heat Transfer
0887-8722,
17
(
3
), pp.
304
312
.
21.
Shih
,
T. I.-P.
,
Lin
,
Y.-L.
,
Chyu
,
M. K.
, and
Gogineni
,
S.
, 1999, “
Computations of Film Cooling from Holes with Struts
,” ASME Paper No. 99-GT-282.
22.
Bunker
,
R. S.
, 2002, “
Film Cooling Effectiveness Due to Discrete Holes Within Transverse Surface Slots
,”
Proceedings IGTI Turbo Expo
,
Amsterdam, The Netherlands
, ASME Paper No. GT-2002–30178.
23.
Altorairi
,
M. S.
, 2003, “
Film Cooling from Cylindrical Holes in Transverse Slots
,” M.S. thesis, Louisiana State University, Baton Rouge, LA.
24.
Bunker
,
R. S.
, 2005, private communication.
25.
Kohli
,
A.
, and
Bogard
,
D. G.
, 1997, “
Adiabatic Effectiveness, Thermal Fields, and Velocity Fields for Film Cooling With Large Angle Injections
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
352
358
.
26.
Shih
,
T.-H.
,
Liou
,
W.
,
Shabbir
,
A.
, and
Zhu
,
J.
, 1995, “
A New k‐ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows—Model Development and Validation
,”
Comput. Fluids
0045-7930,
24
(
3
), 1995, pp.
227
238
.
You do not currently have access to this content.